scispace - formally typeset
Search or ask a question
Author

Lakhmi C. Jain

Bio: Lakhmi C. Jain is an academic researcher from University of Technology, Sydney. The author has contributed to research in topics: Artificial neural network & Intelligent decision support system. The author has an hindex of 41, co-authored 419 publications receiving 10015 citations. Previous affiliations of Lakhmi C. Jain include University of South Australia & University of Canberra.


Papers
More filters
BookDOI
12 Sep 2013
TL;DR: This book introduces Local Binary Patterns, arguably one of the most powerful texture descriptors, and LBP variants, and provides the latest reviews of the literature and a presentation of some of the best L BP variants by researchers at the forefront of textual analysis research and research on LBP descriptors and variants.
Abstract: This book introduces Local Binary Patterns (LBP), arguably one of the most powerful texture descriptors, and LBP variants. This volume provides the latest reviews of the literature and a presentation of some of the best LBP variants by researchers at the forefront of textual analysis research and research on LBP descriptors and variants. The value of LBP variants is illustrated with reported experiments using many databases representing a diversity of computer vision applications in medicine, biometrics, and other areas. There is also a chapter that provides an excellent theoretical foundation for texture analysis and LBP in particular. A special section focuses on LBP and LBP variants in the area of face recognition, including thermal face recognition. This book will be of value to anyone already in the field as well as to those interested in learning more about this powerful family of texture descriptors.

102 citations

Journal ArticleDOI
TL;DR: A review of a variety of supervised neural networks with online learning capabilities, focusing on articles published in main indexed journals in the past 10 years, examines a number of key neural network architectures.
Abstract: Learning in neural networks can broadly be divided into two categories, viz., off-line (or batch) learning and online (or incremental) learning. In this paper, a review of a variety of supervised neural networks with online learning capabilities is presented. Specifically, we focus on articles published in main indexed journals in the past 10 years (2003---2013). We examine a number of key neural network architectures, which include feedforward neural networks, recurrent neural networks, fuzzy neural networks, and other related networks. How the online learning methodologies are incorporated into these networks is exemplified, and how they are applied to solving problems in different domains is highlighted. A summary of the review that covers different network architectures and their applications is presented.

94 citations

BookDOI
06 Aug 2008
TL;DR: The main focus of the compendium is on applied methods tired-and-proven effective to realworld problems, which is especially useful for practitioners, researchers, students and also newcomers to the field.
Abstract: Computational Intelligence: A Compendium presents a well structured overview about this rapidly growing field with contributions of leading experts in Computational Intelligence. The main focus of the compendium is on applied methods tired-and-proven effective to realworld problems, which is especially useful for practitioners, researchers, students and also newcomers to the field. The 25 chapters are grouped into the following themes: I. Overview and Background II. Data Preprocessing and Systems Integration III. Artificial Intelligence IV. Logic and Reasoning V. Ontology VI. Agents VII. Fuzzy Systems VIII. Artificial Neural Networks IX. Evolutionary Approaches X. DNA and Immune-based Computing.

81 citations

BookDOI
24 Sep 2009
TL;DR: This research book presents a sample of recent innovations and advances in techniques and applications of swarm intelligence, application of various swarm intelligence models to operational planning of energy plants, modeling and control of nanorobots, classification of documents, identification of disease biomarkers, and prediction of gene signals.
Abstract: Over the past two decades, swarm intelligence has emerged as a powerful approach to solving optimization as well as other complex problems. Swarm intelligence models are inspired by social behaviours of simple agents interacting among themselves as well as with the environment, e.g., flocking of birds, schooling of fish, foraging of bees and ants. The collective behaviours that emerge out of the interactions at the colony level are useful in achieving complex goals. The main aim of this research book is to present a sample of recent innovations and advances in techniques and applications of swarm intelligence. Among the topics covered in this book include: particle swarm optimization and hybrid methods, ant colony optimization and hybrid methods, bee colony optimization, glowworm swarm optimization, and complex social swarms, application of various swarm intelligence models to operational planning of energy plants, modeling and control of nanorobots, classification of documents, identification of disease biomarkers, and prediction of gene signals. The book is directed to researchers, practicing professionals, and undergraduate as well as graduate students of all disciplines who are interested in enhancing their knowledge in techniques and applications of swarm intelligence.

79 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Book
01 Jan 1995
TL;DR: In this article, Nonaka and Takeuchi argue that Japanese firms are successful precisely because they are innovative, because they create new knowledge and use it to produce successful products and technologies, and they reveal how Japanese companies translate tacit to explicit knowledge.
Abstract: How has Japan become a major economic power, a world leader in the automotive and electronics industries? What is the secret of their success? The consensus has been that, though the Japanese are not particularly innovative, they are exceptionally skilful at imitation, at improving products that already exist. But now two leading Japanese business experts, Ikujiro Nonaka and Hiro Takeuchi, turn this conventional wisdom on its head: Japanese firms are successful, they contend, precisely because they are innovative, because they create new knowledge and use it to produce successful products and technologies. Examining case studies drawn from such firms as Honda, Canon, Matsushita, NEC, 3M, GE, and the U.S. Marines, this book reveals how Japanese companies translate tacit to explicit knowledge and use it to produce new processes, products, and services.

7,448 citations

01 Jan 2009

7,241 citations