scispace - formally typeset
Search or ask a question
Author

Lance Wells

Bio: Lance Wells is an academic researcher from University of Georgia. The author has contributed to research in topics: Glycosylation & Glycan. The author has an hindex of 52, co-authored 165 publications receiving 10495 citations. Previous affiliations of Lance Wells include Johns Hopkins University & University of California, Davis.


Papers
More filters
Journal ArticleDOI
25 Nov 2009-Cell
TL;DR: The results indicate that prokaryotes possess a unique RNA silencing system that functions by homology-dependent cleavage of invader RNAs.

1,007 citations

Journal ArticleDOI
23 Mar 2001-Science
TL;DR: This work systematically examines the current data implicating O-GlcNAc as a regulatory modification important to signal transduction cascades.
Abstract: The dynamic glycosylation of serine or threonine residues on nuclear and cytosolic proteins by O-linked β-N-acetylglucosamine (O-GlcNAc) is abundant in all multicellular eukaryotes. On several proteins, O-GlcNAc and O-phosphate alternatively occupy the same or adjacent sites, leading to the hypothesis that one function of this saccharide is to transiently block phosphorylation. The diversity of proteins modified by O-GlcNAc implies its importance in many basic cellular and disease processes. Here we systematically examine the current data implicating O-GlcNAc as a regulatory modification important to signal transduction cascades.

940 citations

Journal ArticleDOI
TL;DR: It is shown that the transcript is expressed in every human tissue examined but is the highest in the brain, placenta, and pancreas; and cell fractionation suggests that the overexpressed protein is mostly localized in the cytoplasm.

700 citations

Journal ArticleDOI
TL;DR: Elevation of O-GlcNAc levels attenuate insulin signaling and contribute to the mechanism by which increased flux through the HSP leads to insulin resistance in adipocytes.
Abstract: Increased flux of glucose through the hexosamine biosynthetic pathway (HSP) is believed to mediate hyperglycemia-induced insulin resistance in diabetes. The end product of the HSP, UDPβ-N-acetylglucosamine (GlcNAc), is a donor sugar nucleotide for complex glycosylation in the secretory pathway and for O-linked GlcNAc (O-GlcNAc) addition to nucleocytoplasmic proteins. Cycling of the O-GlcNAc posttranslational modification was blocked by pharmacological inhibition of O-GlcNAcase, the enzyme that catalyzes O-GlcNAc removal from proteins, with O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc). PUGNAc treatment increased levels of O-GlcNAc and caused insulin resistance in 3T3-L1 adipocytes. Insulin resistance induced through the HSP by glucosamine and chronic insulin treatment correlated with increased O-GlcNAc levels on nucleocytoplasmic proteins. Whereas insulin receptor autophosphorylation and insulin receptor substrate 2 tyrosine phosphorylation were not affected by PUGNAc inhibition of O-GlcNAcase, downstream phosphorylation of Akt at Thr-308 and glycogen synthase kinase 3β at Ser-9 was inhibited. PUGNAc-induced insulin resistance was associated with increased O-GlcNAc modification of several proteins including insulin receptor substrate 1 and β-catenin, two important effectors of insulin signaling. These results suggest that elevation of O-GlcNAc levels attenuate insulin signaling and contribute to the mechanism by which increased flux through the HSP leads to insulin resistance in adipocytes.

470 citations

Journal ArticleDOI
TL;DR: This paper describes a mass spectrometry-based method for the identification of sites modified by O-GlcNAc that relies on mild β-elimination followed by Michael addition with dithiothreitol (BEMAD), and provides a strategy that uses modification-specific antibodies and enzymes to discriminate between the two post-translational modifications.

415 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
17 Aug 2012-Science
TL;DR: This study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.
Abstract: Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) systems provide bacteria and archaea with adaptive immunity against viruses and plasmids by using CRISPR RNAs (crRNAs) to guide the silencing of invading nucleic acids. We show here that in a subset of these systems, the mature crRNA that is base-paired to trans-activating crRNA (tracrRNA) forms a two-RNA structure that directs the CRISPR-associated protein Cas9 to introduce double-stranded (ds) breaks in target DNA. At sites complementary to the crRNA-guide sequence, the Cas9 HNH nuclease domain cleaves the complementary strand, whereas the Cas9 RuvC-like domain cleaves the noncomplementary strand. The dual-tracrRNA:crRNA, when engineered as a single RNA chimera, also directs sequence-specific Cas9 dsDNA cleavage. Our study reveals a family of endonucleases that use dual-RNAs for site-specific DNA cleavage and highlights the potential to exploit the system for RNA-programmable genome editing.

12,865 citations

Journal ArticleDOI
28 Nov 2014-Science
TL;DR: The power of the CRISPR-Cas9 technology to systematically analyze gene functions in mammalian cells, study genomic rearrangements and the progression of cancers or other diseases, and potentially correct genetic mutations responsible for inherited disorders is illustrated.
Abstract: The advent of facile genome engineering using the bacterial RNA-guided CRISPR-Cas9 system in animals and plants is transforming biology. We review the history of CRISPR (clustered regularly interspaced palindromic repeat) biology from its initial discovery through the elucidation of the CRISPR-Cas9 enzyme mechanism, which has set the stage for remarkable developments using this technology to modify, regulate, or mark genomic loci in a wide variety of cells and organisms from all three domains of life. These results highlight a new era in which genomic manipulation is no longer a bottleneck to experiments, paving the way toward fundamental discoveries in biology, with applications in all branches of biotechnology, as well as strategies for human therapeutics.

4,774 citations

Journal ArticleDOI
01 Jun 2005-Diabetes
TL;DR: What was learned about the pathobiology of diabetic complications starting with that 1966 Science paper and continuing through the end of the 1990s are described, including a unified mechanism that links together all of the seemingly unconnected pieces of the puzzle.
Abstract: It’s a great honor to join the exceptional club of Banting Award winners, many of whom were my role models and mentors. In addition, giving the Banting Lecture also has a very personal meaning to me, because without Frederick Banting, I would have died from type 1 diabetes when I was 8 years old. However, it was already apparent at the time I was diagnosed that for too many people like me, Banting’s discovery of insulin only allowed them to live just long enough to develop blindness, renal failure, and coronary disease. For example, when I started college, the American Diabetes Association’s Diabetes Textbook had this to say to my parents: “The person with type 1 diabetes can be reassured that it is highly likely that he will live at least into his 30s.” Not surprisingly, my parents did not find this particularly reassuring. At the same time we were reading this in 1967, however, the first basic research discovery about the pathobiology of diabetic complications had just been published in Science the previous year. In my Banting Lecture today, I am thus going to tell you a scientific story that is also profoundly personal. I’ve divided my talk into three parts. The first part is called “pieces of the puzzle,” and in it I describe what was learned about the pathobiology of diabetic complications starting with that 1966 Science paper and continuing through the end of the 1990s. In the second part, I present a unified mechanism that links together all of the seemingly unconnected pieces of the puzzle. Finally, in the third part, I focus on three examples of novel therapeutic approaches for the prevention and treatment of diabetic complications, which are all based on the new paradigm of a unifying mechanism for the pathogenesis of diabetic complications. …

4,691 citations

Journal ArticleDOI
05 Jun 2014-Cell
TL;DR: In this paper, the authors describe the development and applications of Cas9 for a variety of research or translational applications while highlighting challenges as well as future directions, and highlight challenges and future directions.

4,361 citations