scispace - formally typeset
Search or ask a question
Author

Larry M. Karnitz

Other affiliations: University of Rochester
Bio: Larry M. Karnitz is an academic researcher from Mayo Clinic. The author has contributed to research in topics: CHEK1 & DNA repair. The author has an hindex of 44, co-authored 80 publications receiving 6298 citations. Previous affiliations of Larry M. Karnitz include University of Rochester.
Topics: CHEK1, DNA repair, DNA damage, Kinase, Phosphorylation


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that Rad9's role in Chk1 activation is to bind TopBP1, which stimulates ATR-mediated Chk 1 phosphorylation via TopBP2's activation domain (AD), a domain that binds and activates ATR.
Abstract: DNA replication stress triggers the activation of Checkpoint Kinase 1 (Chk1) in a pathway that requires the independent chromatin loading of the ATRIP-ATR (ATR-interacting protein/ATM [ataxia-telangiectasia mutated]-Rad3-related kinase) complex and the Rad9-Hus1-Rad1 (9-1-1) clamp. We show that Rad9's role in Chk1 activation is to bind TopBP1, which stimulates ATR-mediated Chk1 phosphorylation via TopBP1's activation domain (AD), a domain that binds and activates ATR. Notably, fusion of the AD to proliferating cell nuclear antigen (PCNA) or histone H2B bypasses the requirement for the 9-1-1 clamp, indicating that the 9-1-1 clamp's primary role in activating Chk1 is to localize the AD to a stalled replication fork.

470 citations

Journal ArticleDOI
TL;DR: It is demonstrated that Hsp90 K294 is acetylated and Mutational analysis of K294 shows that its acetylation status is a strong determinant of client protein and cochaperone binding, suggesting that acetylations/deacetylation of K 294 plays an important role in regulating the Hsp 90 chaperone cycle.

392 citations

Journal ArticleDOI
TL;DR: Findings suggest that the 9-1-1 clamp is a multifunctional complex that is loaded onto DNA at sites of damage, where it coordinates checkpoint activation and DNA repair.

339 citations

Journal Article
TL;DR: The results suggest that disruption of the DNA damage-induced G2 checkpoint by UCN-01 is mediated through the inhibition of the Cdc25C kinases, hChk1 and cTAK1, and that h Chk2 activity is not sufficient to enforce the G2 checkpoints in cells treated with a pharmacological inhibitor of hChK1.
Abstract: The investigational anticancer agent 7-hydroxystaurosporine (UCN-01) abrogates the G2 checkpoint in tumor cells and sensitizes them to the lethal effects of genotoxic anticancer agents. On the basis of the role of the Cdc25C phosphatase in maintenance of this damage-inducible checkpoint, we hypothesized that UCN-01 inhibits a component of the signal transduction pathway that modulates Cdc25C phosphorylation. Of the three kinases known to phosphorylate Cdc25C on Ser216, both checkpoint kinase 1 (hChk1) and Cdc25C-associated protein kinase 1 (cTAK1) were potently inhibited by UCN-01 with IC50s of 11 and 27 nM, respectively. Treatment of K562 erythroblastoid leukemia cells with similar drug concentrations resulted in decreased levels of Ser216 phosphorylation of Cdc25C and complete disruption of the y-radiation-induced G2 checkpoint. In contrast to hChk1, the hChk2 kinase was 100-fold more resistant to inhibition by UCN-01 (IC50, 1040 nM). These results suggest that disruption of the DNA damage-induced G2 checkpoint by UCN-01 is mediated through the inhibition of the Cdc25C kinases, hChk1 and cTAK1, and that hChk2 activity is not sufficient to enforce the G2 checkpoint in cells treated with a pharmacological inhibitor of hChk1.

337 citations

Journal ArticleDOI
J P Secrist1, L A Burns1, Larry M. Karnitz1, Gary A. Koretzky1, Robert T. Abraham1 
TL;DR: It is demonstrated that inhibition of PTP activities in Jurkat cells leads to a T-cell activation response that is remarkably similar to that induced by TCR crosslinkage.

306 citations


Cited by
More filters
Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: Nonenzymatic mechanisms that impact MAP kinase functions and findings from gene disruption studies are highlighted and particular emphasis is on ERK1/2.
Abstract: Mitogen-activated protein (MAP) kinases comprise a family of ubiquitous proline-directed, protein-serine/threonine kinases, which participate in signal transduction pathways that control intracellular events including acute responses to hormones and major developmental changes in organisms. MAP kinases lie in protein kinase cascades. This review discusses the regulation and functions of mammalian MAP kinases. Nonenzymatic mechanisms that impact MAP kinase functions and findings from gene disruption studies are highlighted. Particular emphasis is on ERK1/2.

4,040 citations

Journal ArticleDOI
14 Aug 2009-Science
TL;DR: A proteomic-scale analysis of protein acetylation suggests that it is an important biological regulatory mechanism and the regulatory scope of lysine acetylations is broad and comparable with that of other major posttranslational modifications.
Abstract: Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600 lysine acetylation sites on 1750 proteins and quantified acetylation changes in response to the deacetylase inhibitors suberoylanilide hydroxamic acid and MS-275. Lysine acetylation preferentially targets large macromolecular complexes involved in diverse cellular processes, such as chromatin remodeling, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other major posttranslational modifications.

3,787 citations

Journal ArticleDOI
23 Nov 2000-Nature
TL;DR: The inability to repair DNA damage properly in mammals leads to various disorders and enhanced rates of tumour development, and this work has shown that direct activation of DNA repair networks is needed to correct this problem.
Abstract: The inability to repair DNA damage properly in mammals leads to various disorders and enhanced rates of tumour development. Organisms respond to chromosomal insults by activating a complex damage response pathway. This pathway regulates known responses such as cell-cycle arrest and apoptosis (programmed cell death), and has recently been shown to control additional processes including direct activation of DNA repair networks.

3,230 citations

Journal ArticleDOI
TL;DR: The molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed and apoptosis, which eliminates heavily damaged or seriously deregulated cells, is analyzed.
Abstract: DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.

3,171 citations