scispace - formally typeset
Search or ask a question
Author

Larry R. Dalton

Bio: Larry R. Dalton is an academic researcher from University of Washington. The author has contributed to research in topics: Chromophore & Silicon photonics. The author has an hindex of 84, co-authored 694 publications receiving 26354 citations. Previous affiliations of Larry R. Dalton include Kyung Hee University & Air Force Research Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: A survey of suitable optical polymer systems, their processing techniques, and the integrated optical waveguide components and circuits derived from these materials is summarized in this paper, where the characteristics of several important classes of optical polymers, such as their refractive index, optical loss, processibility/mechanical properties, and environmental performance are discussed.
Abstract: Polymer optical waveguide devices will play a key role in several rapidly developing areas of broadband communications, such as optical networking, metropolitan/access communications, and computing systems due to their easier processibility and integration over inorganic counterparts. The combined advantages also makes them an ideal integration platform where foreign material systems such as YIG (yttrium iron garnet) and lithium niobate, and semiconductor devices such as lasers, detectors, amplifiers, and logic circuits can be inserted into an etched groove in a planar lightwave circuit to enable full amplifier modules or optical add/drop multiplexers on a single substrate. Moreover, the combination of flexibility and toughness in optical polymers makes it suitable for vertical integration to realize 3D and even all-polymer integrated optics. In this review, a survey of suitable optical polymer systems, their processing techniques, and the integrated optical waveguide components and circuits derived from these materials is summarized. The first part is focused on discussing the characteristics of several important classes of optical polymers, such as their refractive index, optical loss, processibility/mechanical properties, and environmental performance. Then, the emphasis is placed on the discussion of several novel passive and active (electro-optic and thermo-optic) polymer systems and versatile processing techniques commonly used for fabricating component devices, such as photoresist-based patterning, direct lithographic patterning, and soft lithography. At the end, a series of compelling polymer optical waveguide devices including optical interconnects, directional couplers, array waveguide grating (AWG) multi/demultiplexers, switches, tunable filters, variable optical attenuators (VOAs), and amplifiers are reviewed. Several integrated planar lightwave circuits, such as tunable optical add/drop multiplexers (OADMs), photonic crystal superprism waveguides, digital optical switches (DOSs) integrated with VOAs, traveling-wave heterojunction phototransistors, and three-dimensionally (3D) integrated optical devices are also highlighted.

1,161 citations

Journal ArticleDOI
07 Apr 2000-Science
TL;DR: This study, together with recent demonstrations of exceptional bandwidths and ease of integration, demonstrates the potential of polymeric materials for next generation telecommunications, information processing, and radio frequency distribution.
Abstract: Electro-optic (EO) modulators encode electrical signals onto fiber optic transmissions. High drive voltages limit gain and noise levels. Typical polymeric and lithium niobate modulators operate with halfwave voltages of 5 volts. Sterically modified organic chromophores have been used to reduce the attenuation of electric field poling-induced electro-optic activity caused by strong intermolecular electrostatic interactions. Such modified chromophores, incorporated into polymer hosts, were used to fabricate EO modulators with halfwave voltages of 0.8 volts (at a telecommunications wavelength of 1318 nanometers) and to achieve a halfwave voltage-interaction length product of 2.2 volt-centimeters. Optical push-pull poling and driving were also used to reduce halfwave voltage. This study, together with recent demonstrations of exceptional bandwidths (more than 110 gigahertz) and ease of integration (with very large scale integration semiconductor circuitry and ultra-low-loss passive optical circuitry) demonstrates the potential of polymeric materials for next generation telecommunications, information processing, and radio frequency distribution.

920 citations

Journal ArticleDOI
TL;DR: In this article, micro-ring wavelength filters and resonant modulators using polymer materials at 1300 nm and 1550 nm are analyzed, designed, and demonstrated, and they are integrated with vertically coupled input and output waveguides.
Abstract: Micro-ring wavelength filters and resonant modulators using polymer materials at 1300 nm and 1550 nm are analyzed, designed, and demonstrated. The rings are integrated with vertically coupled input and output waveguides. The devices are fabricated using optical lithography. Filters with a finesse of 141 and free spectral range of 5 nm at 1300 nm and finesse of 117 with a free spectral range (FSR) of 8 nm at 1550 nm are demonstrated. Ring resonators with a Q as high as 1.3 /spl times/ 10/sup 5/ at 1300 nm are demonstrated. The filters can be temperature tuned at the rate of 14 GHz//spl deg/C. Resonant ring modulators, which use an electrooptic polymer, are demonstrated. The resonance wavelength voltage tunes at the rate of 0.82 GHz/V. The modulators have a bandwidth larger than 2 GHz. Using the resonant modulator, and open eye diagram at 1 Gb/s is demonstrated.

597 citations

Journal ArticleDOI
TL;DR: In this paper, an external-cavity tunable semiconductor laser was used to detect the modulation signal at 1.3 µm using a laser heterodyne system.
Abstract: Electro-optic modulation up to 113 GHz has been demonstrated using traveling wave polymer modulators. The modulation signal was directly detected at 1.3 μm using a laser heterodyne system with an external-cavity tunable semiconductor laser. The device optical response variation, as a function of frequency over the whole W band, was within 3 dB. A well-matched coplanar probe was used to launch W band millimeter wave driving power into the microstrip line electrode on the device. Based upon these measurements, high speed electrodes with integrated millimeter wave transitions had been fabricated and tested.

530 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Department of Materials Science, University of Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Triesteadays.
Abstract: Department of Materials Science, University of Patras, 26504 Rio Patras, Greece, Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vass. Constantinou Avenue, 116 35 Athens, Greece, Institut de Biologie Moleculaire et Cellulaire, UPR9021 CNRS, Immunologie et Chimie Therapeutiques, 67084 Strasbourg, France, and Dipartimento di Scienze Farmaceutiche, Universita di Trieste, Piazzale Europa 1, 34127 Trieste, Italy

3,886 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarized the basic principles and major achievements of plasmon guiding, and details the current state-of-the-art in subwavelength PLASmonic waveguides, passive and active nanoplasmonic components for the generation, manipulation and detection of radiation, and configurations for the nanofocusing of light.
Abstract: Recent years have seen a rapid expansion of research into nanophotonics based on surface plasmon–polaritons. These electromagnetic waves propagate along metal–dielectric interfaces and can be guided by metallic nanostructures beyond the diffraction limit. This remarkable capability has unique prospects for the design of highly integrated photonic signal-processing systems, nanoresolution optical imaging techniques and sensors. This Review summarizes the basic principles and major achievements of plasmon guiding, and details the current state-of-the-art in subwavelength plasmonic waveguides, passive and active nanoplasmonic components for the generation, manipulation and detection of radiation, and configurations for the nanofocusing of light. Potential future developments and applications of nanophotonic devices and circuits are also discussed, such as in optical signals processing, nanoscale optical devices and near-field microscopy with nanoscale resolution.

3,481 citations

Journal ArticleDOI

2,877 citations

Proceedings Article
01 Jan 2005
TL;DR: In quantum optical devices, microcavities can coax atoms or quantum dots to emit spontaneous photons in a desired direction or can provide an environment where dissipative mechanisms such as spontaneous emission are overcome so that quantum entanglement of radiation and matter is possible.
Abstract: Microcavity physics and design will be reviewed. Following an overview of applications in quantum optics, communications and biosensing, recent advances in ultra-high-Q research will be presented.

2,857 citations