scispace - formally typeset
Search or ask a question
Author

Larry R. Nittler

Bio: Larry R. Nittler is an academic researcher from Carnegie Institution for Science. The author has contributed to research in topics: Presolar grains & Chondrite. The author has an hindex of 67, co-authored 320 publications receiving 14096 citations. Previous affiliations of Larry R. Nittler include Goddard Space Flight Center & Carnegie Learning.


Papers
More filters
Journal ArticleDOI
15 Dec 2006-Science
TL;DR: The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study, and preliminary examination shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin.
Abstract: The Stardust spacecraft collected thousands of particles from comet 81P/Wild 2 and returned them to Earth for laboratory study. The preliminary examination of these samples shows that the nonvolatile portion of the comet is an unequilibrated assortment of materials that have both presolar and solar system origin. The comet contains an abundance of silicate grains that are much larger than predictions of interstellar grain models, and many of these are high-temperature minerals that appear to have formed in the inner regions of the solar nebula. Their presence in a comet proves that the formation of the solar system included mixing on the grandest scales.

886 citations

Journal ArticleDOI
15 Dec 2006-Science
TL;DR: The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage and a diverse suite of organic compounds is present and identifiable within the returned samples.
Abstract: Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.

547 citations

Journal ArticleDOI
10 Aug 2012-Science
TL;DR: Hydrogen isotopic analysis of primitive meteorites implicates asteroids as early sources of Earth’s water and argues against an influx of water ice from the outer solar system, which has been invoked to explain the nonsolar oxygen isotopic composition of the inner solar system.
Abstract: Determining the source(s) of hydrogen, carbon, and nitrogen accreted by Earth is important for understanding the origins of water and life and for constraining dynamical processes that operated during planet formation. Chondritic meteorites are asteroidal fragments that retain records of the first few million years of solar system history. The deuterium/hydrogen (D/H) values of water in carbonaceous chondrites are distinct from those in comets and Saturn’s moon Enceladus, implying that they formed in a different region of the solar system, contrary to predictions of recent dynamical models. The D/H values of water in carbonaceous chondrites also argue against an influx of water ice from the outer solar system, which has been invoked to explain the nonsolar oxygen isotopic composition of the inner solar system. The bulk hydrogen and nitrogen isotopic compositions of CI chondrites suggest that they were the principal source of Earth’s volatiles.

540 citations

Journal ArticleDOI
30 Sep 2011-Science
TL;DR: X-ray fluorescence spectra obtained by the MESSENGENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets as discussed by the authors, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles.
Abstract: X-ray fluorescence spectra obtained by the MESSENGER spacecraft orbiting Mercury indicate that the planet's surface differs in composition from those of other terrestrial planets Relatively high Mg/Si and low Al/Si and Ca/Si ratios rule out a lunarlike feldspar-rich crust The sulfur abundance is at least 10 times higher than that of the silicate portion of Earth or the Moon, and this observation, together with a low surface Fe abundance, supports the view that Mercury formed from highly reduced precursor materials, perhaps akin to enstatite chondrite meteorites or anhydrous cometary dust particles Low Fe and Ti abundances do not support the proposal that opaque oxides of these elements contribute substantially to Mercury's low and variable surface reflectance

396 citations

Journal ArticleDOI
15 Dec 2006-Science
TL;DR: Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials.
Abstract: Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single 17 O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is 16 O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion.

370 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Silicon nitride has been researched intensively, largely in response to the challenge to develop internal combustion engines with hot-zone components made entirely from ceramics as mentioned in this paper, but this research effort has succeeded in generating a degree of understanding of silicon nitride and of its processing and properties.
Abstract: Silicon nitride has been researched intensively, largely in response to the challenge to develop internal combustion engines with hot-zone components made entirely from ceramics. The ceramic engine programs have had only partial success, but this research effort has succeeded in generating a degree of understanding of silicon nitride and of its processing and properties, which in many respects is more advanced than of more widely used technical ceramics. This review examines from the historical standpoint the development of silicon nitride and of its processing into a range of high-grade ceramic materials. The development of understanding of microstructure–property relationships in the silicon nitride materials is also surveyed. Because silicon nitride has close relationships with the SiAlON group of materials, it is impossible to discuss the one without some reference to the other, and a brief mention of the development of the SiAlONs is included for completeness.

1,253 citations

Book ChapterDOI
TL;DR: The composition of the primitive mantle derived by as mentioned in this paper shows that Earth was assembled from material that shows many of the same chemical fractionation processes as chondritic meteorites. But the stable isotope record excludes chondrite meteorites as the ‘building blocks’ of Earth.
Abstract: The composition of the primitive mantle derived here shows that Earth was assembled from material that shows many of the same chemical fractionation processes as chondritic meteorites. These processes occurred at the initial stage of the solar system formation, under conditions thought to be present in the solar nebula. But the stable isotope record excludes chondritic meteorites as the ‘building blocks’ of Earth. Meteorites formed in local environments separated from that part of the inner solar system where much of the material forming the terrestrial planets was sourced.

1,196 citations

Journal ArticleDOI
14 Jul 2011-Nature
TL;DR: Simulation of the early Solar System shows how the inward migration of Jupiter to 1.5 au, and its subsequent outward migration, lead to a planetesimal disk truncated at 1’au; the terrestrial planets then form from this disk over the next 30–50 million years, with an Earth/Mars mass ratio consistent with observations.
Abstract: Jupiter and Saturn formed in a few million years from a gas-dominated protoplanetary disk, and were susceptible to gas-driven migration of their orbits on timescales of only approximately 100,000 years. Hydrodynamic simulations show that these giant planets can undergo a two-stage, inward-then-outward, migration. The terrestrial planets finished accreting much later and their characteristics, including Mars' small mass, are best reproduced by starting from a planetesimal disk with an outer edge at about one astronomical unit from the Sun (1 AU is the Earth-Sun distance). Here we report simulations of the early Solar System that show how the inward migration of Jupiter to 1.5 AU, and its subsequent outward migration, lead to a planetesimal disk truncated at 1 AU; the terrestrial planets then form from this disk over the next 30-50 million years, with an Earth/Mars mass ratio consistent with observations. Scattering by Jupiter initially empties but then repopulates the asteroid belt, with inner-belt bodies originating between 1 and 3 AU and outer-belt bodies originating between and beyond the giant planets. This explains the significant compositional differences across the asteroid belt. The key aspect missing from previous models of terrestrial planet formation is the substantial radial migration of the giant planets, which suggests that their behaviour is more similar to that inferred for extrasolar planets than previously thought.

1,174 citations

Journal ArticleDOI
TL;DR: Very metal-deficient stars have been identified in the last few decades as discussed by the authors, leading to the discovery of the majority of stars with [Fe/H] < −2.0.
Abstract: ▪ Abstract We discuss the importance of very metal-poor stars to develop an understanding of the nature of the first stars that formed in the Universe and the nucleosynthesis events associated with them, as well as to refine models of galaxy formation, in particular for large spiral galaxies such as the Milky Way. After briefly reviewing the history of the search for very metal-deficient stars in the Galaxy, we summarize ongoing efforts, concentrating on the two large objective-prism surveys that have led to the discovery of the majority of stars with [Fe/H] < −2.0 known at present: the HK survey of Beers and collaborators and the Hamburg/ESO survey of Christlieb and collaborators. We then consider the wealth of information that can be gleaned from high-resolution spectroscopic study of very metal-poor stars. We close with a list of open questions and a discussion of new survey techniques that will expand the sample of recognized very metal-deficient stars in the Galaxy by several orders of magnitude.

1,173 citations

Journal ArticleDOI
TL;DR: In this paper, a review of nucleosynthesis in AGB stars outlining the development of theoretical models and their relationship to observations is presented, focusing on the new high-resolution codes with high accuracy.
Abstract: ▪ Abstract We present a review of nucleosynthesis in AGB stars outlining the development of theoretical models and their relationship to observations. We focus on the new high resolution codes with...

1,125 citations