scispace - formally typeset
Search or ask a question
Author

Lars E. French

Bio: Lars E. French is an academic researcher from University of Miami. The author has contributed to research in topics: Medicine & Inflammasome. The author has an hindex of 71, co-authored 477 publications receiving 22143 citations. Previous affiliations of Lars E. French include University of Erlangen-Nuremberg & University of Southampton.


Papers
More filters
Journal ArticleDOI
10 Jul 1997-Nature
TL;DR: The characterization of an inhibitor of apoptosis is reported, designated FLIP (for FLICE-inhibitory protein), which is predominantly expressed in muscle and lymphoid tissues and may be implicated in tissue homeostasis as an important regulator of apoptotic regulation.
Abstract: The widely expressed protein Fas is a member of the tumour necrosis factor receptor family which can trigger apoptosis1 However, Fas surface expression does not necessarily render cells susceptible to Fas ligand-induced death signals1,2, indicating that inhibitors of the apoptosis-signalling pathway must exist Here we report the characterization of an inhibitor of apoptosis, designated FLIP (for FLICE-inhibitory protein), which is predominantly expressed in muscle and lymphoid tissues The short form, FLIPS, contains two death effector domains and is structurally related to the viral FLIP inhibitors of apoptosis3, whereas the long form, FLIPL, contains in addition a caspase-like domain in which the active-centre cysteine residue is substituted by a tyrosine residue FLIPS and FLIPL interact with the adaptor protein FADD4,5 and the protease FLICE6,7, and potently inhibit apoptosis induced by all known human death receptors1 FLIPL is expressed during the early stage of T-cell activation, but disappears when T cells become susceptible to Fas ligand-mediated apoptosis High levels of FLIPL protein are also detectable in melanoma cell lines and malignant melanoma tumours Thus FLIP may be implicated in tissue homeostasis as an important regulator of apoptosis

2,639 citations

Journal ArticleDOI
22 Nov 1996-Science
TL;DR: In vivo, injection of FasL+ mouse melanoma cells in mice led to rapid tumor formation and tumorigenesis was delayed in Fas-deficient lpr mutant mice in which immune effector cells cannot be killed by FasL.
Abstract: Malignant melanoma accounts for most of the increasing mortality from skin cancer. Melanoma cells were found to express Fas (also called Apo-1 or CD95) ligand (FasL). In metastatic lesions, Fas-expressing T cell infiltrates were proximal to FasL+ tumor cells. In vitro, apoptosis of Fas-sensitive target cells occurred upon incubation with melanoma tumor cells; and in vivo, injection of FasL+ mouse melanoma cells in mice led to rapid tumor formation. In contrast, tumorigenesis was delayed in Fas-deficient lpr mutant mice in which immune effector cells cannot be killed by FasL. Thus, FasL may contribute to the immune privilege of tumors.

1,285 citations

Journal ArticleDOI
16 Oct 1998-Science
TL;DR: Antibodies present in pooled human intravenous immunoglobulins (IVIG) blocked Fas-mediated keratinocyte death in vitro and indicated that IVIG may be an effective treatment for toxic epidermal necrolysis of TEN.
Abstract: Toxic epidermal necrolysis (TEN, Lyell's syndrome) is a severe adverse drug reaction in which keratinocytes die and large sections of epidermis separate from the dermis. Keratinocytes normally express the death receptor Fas (CD95); those from TEN patients were found to express lytically active Fas ligand (FasL). Antibodies present in pooled human intravenous immunoglobulins (IVIG) blocked Fas-mediated keratinocyte death in vitro. In a pilot study, 10 consecutive individuals with clinically and histologically confirmed TEN were treated with IVIG; disease progression was rapidly reversed and the outcome was favorable in all cases. Thus, Fas-FasL interactions are directly involved in the epidermal necrolysis of TEN, and IVIG may be an effective treatment.

1,020 citations

Journal ArticleDOI
TL;DR: A role for MyD88 as an adapter in IL-1 signal transduction is supported; MyD 88 forms homodimers in vivo through DD-DD and Toll-Toll interactions.

657 citations

Journal ArticleDOI
TL;DR: A novel member of the TNF family designated APRIL (for a proliferation-inducing ligand) is described and it is suggested that APRIL may be implicated in the regulation of tumor cell growth.
Abstract: Members of the tumor necrosis factor (TNF) family induce pleiotropic biological responses, including cell growth, differentiation, and even death. Here we describe a novel member of the TNF family designated APRIL (for a proliferation-inducing ligand). Although transcripts of APRIL are of low abundance in normal tissues, high levels of mRNA are detected in transformed cell lines, and in human cancers of colon, thyroid, and lymphoid tissues in vivo. The addition of recombinant APRIL to various tumor cells stimulates their proliferation. Moreover, APRIL-transfected NIH-3T3 cells show an increased rate of tumor growth in nude mice compared with the parental cell line. These findings suggest that APRIL may be implicated in the regulation of tumor cell growth.

605 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Rapid progress that has recently improved the understanding of the molecular mechanisms that mediate TLR signalling is reviewed.
Abstract: One of the mechanisms by which the innate immune system senses the invasion of pathogenic microorganisms is through the Toll-like receptors (TLRs), which recognize specific molecular patterns that are present in microbial components. Stimulation of different TLRs induces distinct patterns of gene expression, which not only leads to the activation of innate immunity but also instructs the development of antigen-specific acquired immunity. Here, we review the rapid progress that has recently improved our understanding of the molecular mechanisms that mediate TLR signalling.

7,906 citations

Journal ArticleDOI
12 Oct 2000-Nature
TL;DR: The basic components of the death machinery are reviewed, how they interact to regulate apoptosis in a coordinated manner is described, and the main pathways that are used to activate cell death are discussed.
Abstract: Apoptosis - the regulated destruction of a cell - is a complicated process. The decision to die cannot be taken lightly, and the activity of many genes influence a cell's likelihood of activating its self-destruction programme. Once the decision is taken, proper execution of the apoptotic programme requires the coordinated activation and execution of multiple subprogrammes. Here I review the basic components of the death machinery, describe how they interact to regulate apoptosis in a coordinated manner, and discuss the main pathways that are used to activate cell death.

7,255 citations

Journal ArticleDOI
28 Aug 1998-Science
TL;DR: This work has shown that understanding caspase regulation is intimately linked to the ability to rationally manipulate apoptosis for therapeutic gain.
Abstract: Apoptosis, an evolutionarily conserved form of cell suicide, requires specialized machinery. The central component of this machinery is a proteolytic system involving a family of proteases called caspases. These enzymes participate in a cascade that is triggered in response to proapoptotic signals and culminates in cleavage of a set of proteins, resulting in disassembly of the cell. Understanding caspase regulation is intimately linked to the ability to rationally manipulate apoptosis for therapeutic gain.

6,924 citations

Journal ArticleDOI
28 Aug 1998-Science
TL;DR: Apoptosis is a cell suicide mechanism that enables metazoans to control cell number in tissues and to eliminate individual cells that threaten the animal's survival.
Abstract: Apoptosis is a cell suicide mechanism that enables metazoans to control cell number in tissues and to eliminate individual cells that threaten the animal's survival. Certain cells have unique sensors, termed death receptors, on their surface. Death receptors detect the presence of extracellular death signals and, in response, they rapidly ignite the cell's intrinsic apoptosis machinery.

5,968 citations

Journal ArticleDOI
TL;DR: This unit discusses mammalian Toll receptors (TLR1‐10) that have an essential role in the innate immune recognition of microorganisms and are discussed are TLR‐mediated signaling pathways and antibodies that are available to detect specific TLRs.
Abstract: The innate immune system in drosophila and mammals senses the invasion of microorganisms using the family of Toll receptors, stimulation of which initiates a range of host defense mechanisms. In drosophila antimicrobial responses rely on two signaling pathways: the Toll pathway and the IMD pathway. In mammals there are at least 10 members of the Toll-like receptor (TLR) family that recognize specific components conserved among microorganisms. Activation of the TLRs leads not only to the induction of inflammatory responses but also to the development of antigen-specific adaptive immunity. The TLR-induced inflammatory response is dependent on a common signaling pathway that is mediated by the adaptor molecule MyD88. However, there is evidence for additional pathways that mediate TLR ligand-specific biological responses.

5,915 citations