scispace - formally typeset
Search or ask a question
Author

Lars Lundberg

Bio: Lars Lundberg is an academic researcher from Blekinge Institute of Technology. The author has contributed to research in topics: Scheduling (computing) & Software development. The author has an hindex of 14, co-authored 136 publications receiving 913 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper has implemented the extended critical path analysis in a performance optimization tool and allows the user to determine the extendedcritical path of a multithreaded application written for the Solaris operating system for any number of processors based on execution on a single processor workstation.

198 citations

Journal ArticleDOI
TL;DR: This study finds that the performance of a team not only depends on the team personality composition, but also on the interactive effects of team climate, and investigates the relationship between team personality and team climate.
Abstract: Context: Previous research found that the performance of a team not only depends on the team personality composition, but also on the interactive effects of team climate. Although investigationon p ...

30 citations

01 Jan 2001
TL;DR: The report summarises the first year of the research project 'Design for Design in Use of Database Applications' which focuses on end user tailoring and adaptable systems.
Abstract: The report summarises the first year of the research project 'Design for Design in Use of Database Applications'. It focuses on end user tailoring and adaptable systems.

28 citations

Journal ArticleDOI
TL;DR: The purpose of the research was productivity improvement and assessment when using the new platform, and the current productivity level is evaluated by comparing it with UNIX development.
Abstract: The high non-functional requirements on mobile telecommunication applications call for new solutions. An example of such a solution can be a software platform that provides high performance and availability. The introduction of such a platform may, however, affect the development productivity. In this study, we present experiences from research carried out at Ericsson. The purpose of the research was productivity improvement and assessment when using the new platform. In this study, we quantify and evaluate the current productivity level by comparing it with UNIX development. The comparison is based on two large, commercially, available systems. We reveal a factor of four differences in productivity. Later, we decompose the problem into two issues: code writing speed and average amount of code necessary to deliver a certain functionality. We assess the impact of both these issues. We describe the nature of the problem by identifying factors that affect productivity and estimating their importance. To the issues identified we suggest a number of remedies. The main methods used in the study are interviews and historical data research.

26 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: This study shows that Docker had lower overhead compared to the VMware when running Cassandra, and the Cassandra's performance on the Dockerized infrastructure was as good as on the Non-Virtualized.
Abstract: Today, scalable and high-available NoSQL distributed databases are largely used as Big Data platforms Such distributed databases typically run on a virtualized infrastructure that could be implemented using Hypervisor-based virtualization or Container-based virtualization Hypervisor-based virtualization is a mature technology but imposes overhead on CPU, memory, networking, and disk Recently, by sharing the operating system resources and simplifying the deployment of applications, container-based virtualization is getting more popular Container-based virtualization is lightweight in resource consumption while also providing isolation However, disadvantages are security issues and I/O performance As a result, today these two technologies are competing to provide virtual instances for running big data platforms Hence, a key issue becomes the assessment of the performance of those virtualization technologies while running distributed databases This paper presents an extensive performance comparison between VMware and Docker container, while running Apache Cassandra as workload Apache Cassandra is a leading NoSQL distributed database when it comes to Big Data platforms As baseline for comparisons we used the Cassandra's performance when running on a physical infrastructure Our study shows that Docker had lower overhead compared to the VMware when running Cassandra In fact, the Cassandra's performance on the Dockerized infrastructure was as good as on the Non-Virtualized

25 citations


Cited by
More filters
Book
01 Nov 2002
TL;DR: Drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short), which aims to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved.
Abstract: From the Book: “Clean code that works” is Ron Jeffries’ pithy phrase. The goal is clean code that works, and for a whole bunch of reasons: Clean code that works is a predictable way to develop. You know when you are finished, without having to worry about a long bug trail.Clean code that works gives you a chance to learn all the lessons that the code has to teach you. If you only ever slap together the first thing you think of, you never have time to think of a second, better, thing. Clean code that works improves the lives of users of our software.Clean code that works lets your teammates count on you, and you on them.Writing clean code that works feels good.But how do you get to clean code that works? Many forces drive you away from clean code, and even code that works. Without taking too much counsel of our fears, here’s what we do—drive development with automated tests, a style of development called “Test-Driven Development” (TDD for short). In Test-Driven Development, you: Write new code only if you first have a failing automated test.Eliminate duplication. Two simple rules, but they generate complex individual and group behavior. Some of the technical implications are:You must design organically, with running code providing feedback between decisionsYou must write your own tests, since you can’t wait twenty times a day for someone else to write a testYour development environment must provide rapid response to small changesYour designs must consist of many highly cohesive, loosely coupled components, just to make testing easy The two rules imply an order to the tasks ofprogramming: 1. Red—write a little test that doesn’t work, perhaps doesn’t even compile at first 2. Green—make the test work quickly, committing whatever sins necessary in the process 3. Refactor—eliminate all the duplication created in just getting the test to work Red/green/refactor. The TDD’s mantra. Assuming for the moment that such a style is possible, it might be possible to dramatically reduce the defect density of code and make the subject of work crystal clear to all involved. If so, writing only code demanded by failing tests also has social implications: If the defect density can be reduced enough, QA can shift from reactive to pro-active workIf the number of nasty surprises can be reduced enough, project managers can estimate accurately enough to involve real customers in daily developmentIf the topics of technical conversations can be made clear enough, programmers can work in minute-by-minute collaboration instead of daily or weekly collaborationAgain, if the defect density can be reduced enough, we can have shippable software with new functionality every day, leading to new business relationships with customers So, the concept is simple, but what’s my motivation? Why would a programmer take on the additional work of writing automated tests? Why would a programmer work in tiny little steps when their mind is capable of great soaring swoops of design? Courage. Courage Test-driven development is a way of managing fear during programming. I don’t mean fear in a bad way, pow widdle prwogwammew needs a pacifiew, but fear in the legitimate, this-is-a-hard-problem-and-I-can’t-see-the-end-from-the-beginning sense. If pain is nature’s way of saying “Stop!”, fear is nature’s way of saying “Be careful.” Being careful is good, but fear has a host of other effects: Makes you tentativeMakes you want to communicate lessMakes you shy from feedbackMakes you grumpy None of these effects are helpful when programming, especially when programming something hard. So, how can you face a difficult situation and: Instead of being tentative, begin learning concretely as quickly as possible.Instead of clamming up, communicate more clearly.Instead of avoiding feedback, search out helpful, concrete feedback.(You’ll have to work on grumpiness on your own.) Imagine programming as turning a crank to pull a bucket of water from a well. When the bucket is small, a free-spinning crank is fine. When the bucket is big and full of water, you’re going to get tired before the bucket is all the way up. You need a ratchet mechanism to enable you to rest between bouts of cranking. The heavier the bucket, the closer the teeth need to be on the ratchet. The tests in test-driven development are the teeth of the ratchet. Once you get one test working, you know it is working, now and forever. You are one step closer to having everything working than you were when the test was broken. Now get the next one working, and the next, and the next. By analogy, the tougher the programming problem, the less ground should be covered by each test. Readers of Extreme Programming Explained will notice a difference in tone between XP and TDD. TDD isn’t an absolute like Extreme Programming. XP says, “Here are things you must be able to do to be prepared to evolve further.” TDD is a little fuzzier. TDD is an awareness of the gap between decision and feedback during programming, and techniques to control that gap. “What if I do a paper design for a week, then test-drive the code? Is that TDD?” Sure, it’s TDD. You were aware of the gap between decision and feedback and you controlled the gap deliberately. That said, most people who learn TDD find their programming practice changed for good. “Test Infected” is the phrase Erich Gamma coined to describe this shift. You might find yourself writing more tests earlier, and working in smaller steps than you ever dreamed would be sensible. On the other hand, some programmers learn TDD and go back to their earlier practices, reserving TDD for special occasions when ordinary programming isn’t making progress. There are certainly programming tasks that can’t be driven solely by tests (or at least, not yet). Security software and concurrency, for example, are two topics where TDD is not sufficient to mechanically demonstrate that the goals of the software have been met. Security relies on essentially defect-free code, true, but also on human judgement about the methods used to secure the software. Subtle concurrency problems can’t be reliably duplicated by running the code. Once you are finished reading this book, you should be ready to: Start simplyWrite automated testsRefactor to add design decisions one at a time This book is organized into three sections. An example of writing typical model code using TDD. The example is one I got from Ward Cunningham years ago, and have used many times since, multi-currency arithmetic. In it you will learn to write tests before code and grow a design organically.An example of testing more complicated logic, including reflection and exceptions, by developing a framework for automated testing. This example also serves to introduce you to the xUnit architecture that is at the heart of many programmer-oriented testing tools. In the second example you will learn to work in even smaller steps than in the first example, including the kind of self-referential hooha beloved of computer scientists.Patterns for TDD. Included are patterns for the deciding what tests to write, how to write tests using xUnit, and a greatest hits selection of the design patterns and refactorings used in the examples. I wrote the examples imagining a pair programming session. If you like looking at the map before wandering around, you may want to go straight to the patterns in Section 3 and use the examples as illustrations. If you prefer just wandering around and then looking at the map to see where you’ve been, try reading the examples through and refering to the patterns when you want more detail about a technique, then using the patterns as a reference. Several reviewers have commented they got the most out of the examples when they started up a programming environment and entered the code and ran the tests as they read. A note about the examples. Both examples, multi-currency calculation and a testing framework, appear simple. There are (and I have seen) complicated, ugly, messy ways of solving the same problems. I could have chosen one of those complicated, ugly, messy solutions to give the book an air of “reality.” However, my goal, and I hope your goal, is to write clean code that works. Before teeing off on the examples as being too simple, spend 15 seconds imagining a programming world in which all code was this clear and direct, where there were no complicated solutions, only apparently complicated problems begging for careful thought. TDD is a practice that can help you lead yourself to exactly that careful thought.

1,864 citations

Journal ArticleDOI
TL;DR: Although there are a set of fault prediction studies in which confidence is possible, more studies are needed that use a reliable methodology and which report their context, methodology, and performance comprehensively.
Abstract: Background: The accurate prediction of where faults are likely to occur in code can help direct test effort, reduce costs, and improve the quality of software. Objective: We investigate how the context of models, the independent variables used, and the modeling techniques applied influence the performance of fault prediction models. Method: We used a systematic literature review to identify 208 fault prediction studies published from January 2000 to December 2010. We synthesize the quantitative and qualitative results of 36 studies which report sufficient contextual and methodological information according to the criteria we develop and apply. Results: The models that perform well tend to be based on simple modeling techniques such as Naive Bayes or Logistic Regression. Combinations of independent variables have been used by models that perform well. Feature selection has been applied to these combinations when models are performing particularly well. Conclusion: The methodology used to build models seems to be influential to predictive performance. Although there are a set of fault prediction studies in which confidence is possible, more studies are needed that use a reliable methodology and which report their context, methodology, and performance comprehensively.

1,012 citations

Journal ArticleDOI
TL;DR: The survey outlines fundamental results about multiprocessor real-time scheduling that hold independent of the scheduling algorithms employed, and provides a taxonomy of the different scheduling methods, and considers the various performance metrics that can be used for comparison purposes.
Abstract: This survey covers hard real-time scheduling algorithms and schedulability analysis techniques for homogeneous multiprocessor systems. It reviews the key results in this field from its origins in the late 1960s to the latest research published in late 2009. The survey outlines fundamental results about multiprocessor real-time scheduling that hold independent of the scheduling algorithms employed. It provides a taxonomy of the different scheduling methods, and considers the various performance metrics that can be used for comparison purposes. A detailed review is provided covering partitioned, global, and hybrid scheduling algorithms, approaches to resource sharing, and the latest results from empirical investigations. The survey identifies open issues, key research challenges, and likely productive research directions.

910 citations