scispace - formally typeset
Search or ask a question
Author

Lars W. Liebmann

Other affiliations: Siemens, Qimonda, GlobalFoundries
Bio: Lars W. Liebmann is an academic researcher from IBM. The author has contributed to research in topics: Integrated circuit layout & Design for manufacturability. The author has an hindex of 41, co-authored 164 publications receiving 5575 citations. Previous affiliations of Lars W. Liebmann include Siemens & Qimonda.


Papers
More filters
Proceedings ArticleDOI
Lars W. Liebmann1
06 Apr 2003
TL;DR: This tutorial introduces the reader to the basic concepts of optical lithography, derives fundamental resolution limits, and explains the principles of resolution enhancement techniques and their impact on chip layout.
Abstract: This tutorial introduces the reader to the basic concepts of optical lithography, derives fundamental resolution limits, reviews the challenges facing future technology nodes, explains the principles of resolution enhancement techniques and their impact on chip layout, and discusses layout optimization considerations.

281 citations

Proceedings ArticleDOI
03 May 2004
TL;DR: In this article, the implementation of alternating phase shifted mask lithography for the poly-conductor level of IBM's leading edge 65nm microprocessor is described, and very broad and "resolutionenhancement-technology generic" design rules, referred to as radical design restrictions, are demonstrated.
Abstract: The implementation of alternating phase shifted mask lithography for the poly-conductor level of IBM's leading edge 65nm microprocessor is described. Very broad and 'resolution-enhancement-technology generic' design rules, referred to as radical design restrictions, are demonstrated to be key enablers of alternating phase shifted mask design. The benefit of these radical design restrictions over conventional design rules and other alternating phase shifted mask design approaches is detailed for key aspects of the design flow.

216 citations

Patent
05 Jan 2001
TL;DR: In this article, a reference pitch is chosen and the mask bias is found that optimizes the process window, and a series of other pitches and mask biases are then analyzed by finding the common process window with the reference pitch.
Abstract: Optical proximity correction (OPC) and assist feature rules are generated using a process window (PW) analysis. A reference pitch is chosen and the mask bias is found that optimizes the process window. This can be done using standard process window analysis or through a weighted process window (WPW) analysis which accounts for focus and dose distributions that are expected in a real process. The WPW analysis gives not only the optimum mask bias, but also the center focus and dose conditions for the optimum process centering. A series of other pitches and mask biases are then analyzed by finding the common process window with the reference pitch. For the standard PW analysis, a common process window is found. For the WPW analysis, the WPW is computed at the center focus and dose conditions found for the reference pitch. If mask or lens errors are to be accounted for, then multiple structures can be included in the analysis. Once the common process windows for the mask features of interest have been computed, functional fits to the data can be found. Once the functional forms have been found for each of the OPC parameters, the rules table can be determined by solving for the spacings of interest in the design.

210 citations

Patent
15 Jul 2003
TL;DR: In this article, a method of generating patterns of a pair of photomasks from a data set defining a circuit layout to be provided on a substrate includes identifying critical segments of the circuit layout on the substrate.
Abstract: A method of generating patterns of a pair of photomasks from a data set defining a circuit layout to be provided on a substrate includes identifying critical segments of the circuit layout to be provided on the substrate. Block mask patterns are generated and then legalized based on the identified critical segments. Thereafter, phase mask patterns are generated, legalized and colored. The legalized block mask patterns and the legalized phase mask patterns that have been colored define features of a block mask and an alternating phase shift mask, respectively, for use in a dual exposure method for patterning features in a resist layer of a substrate.

207 citations

Patent
30 May 1996
TL;DR: In this paper, a method for performing optical proximity correction was proposed that not only limits the correction to electrically relevant structures, but also improves the accuracy of the corrections by processing individual feature edges.
Abstract: A method for performing optical proximity correction is disclosed that not only limits the optical proximity correction to electrically relevant structures, but also improves the accuracy of the corrections by processing individual feature edges, and minimizes the mask manufacturing impacts by avoiding the introduction of jogs into the design. Critical edge regions of the relevant electrical structures are analyzed, sorted and manipulated to receive optical proximity corrections.

196 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1997
TL;DR: In this article, the key challenges in further scaling of CMOS technology into the nanometer (sub-100 nm) regime in light of fundamental physical effects and practical considerations are discussed, including power supply and threshold voltage, short-channel effect, gate oxide, high-field effects, dopant number fluctuations and interconnect delays.
Abstract: Starting with a brief review on 0.1-/spl mu/m (100 nm) CMOS status, this paper addresses the key challenges in further scaling of CMOS technology into the nanometer (sub-100 nm) regime in light of fundamental physical effects and practical considerations. Among the issues discussed are: lithography, power supply and threshold voltage, short-channel effect, gate oxide, high-field effects, dopant number fluctuations and interconnect delays. The last part of the paper discusses several alternative or unconventional device structures, including silicon-on-insulator (SOI), SiGe MOSFET's, low-temperature CMOS, and double-gate MOSFET's, which may lead to the outermost limits of silicon scaling.

861 citations

Journal Article
TL;DR: The phase-shifting mask as mentioned in this paper consists of a normal transmission mask that has been coated with a transparent layer patterned to ensure that the optical phases of nearest apertures are opposite.
Abstract: The phase-shifting mask consists of a normal transmission mask that has been coated with a transparent layer patterned to ensure that the optical phases of nearest apertures are opposite. Destructive interference between waves from adjacent apertures cancels some diffraction effects and increases the spatial resolution with which such patterns can be projected. A simple theory predicts a near doubling of resolution for illumination with partial incoherence σ < 0.3, and substantial improvements in resolution for σ < 0.7. Initial results obtained with a phase-shifting mask patterned with typical device structures by electron-beam lithography and exposed using a Mann 4800 10× tool reveals a 40-percent increase in usuable resolution with some structures printed at a resolution of 1000 lines/mm. Phase-shifting mask structures can be used to facilitate proximity printing with larger gaps between mask and wafer. Theory indicates that the increase in resolution is accompanied by a minimal decrease in depth of focus. Thus the phase-shifting mask may be the most desirable device for enhancing optical lithography resolution in the VLSI/VHSIC era.

705 citations

Patent
Khurram Zafar1, Sagar A. Kekare1, Ellis Chang1, Allen Park1, Peter Rose1 
20 Nov 2006
TL;DR: In this paper, a computer-implemented method for binning defects detected on a wafer includes comparing portions of design data proximate positions of the defects in design data space.
Abstract: Various methods and systems for utilizing design data in combination with inspection data are provided. One computer-implemented method for binning defects detected on a wafer includes comparing portions of design data proximate positions of the defects in design data space. The method also includes determining if the design data in the portions is at least similar based on results of the comparing step. In addition, the method includes binning the defects in groups such that the portions of the design data proximate the positions of the defects in each of the groups are at least similar. The method further includes storing results of the binning step in a storage medium.

528 citations

Patent
01 Nov 1996
TL;DR: In this article, a method of automatically placing transistors of a folded transistor circuit for synthesizing rows of transistors in a semiconductor layout is presented, based on the evaluation of its cost.
Abstract: A method of automatically placing transistors of a folded transistor circuit for synthesizing rows of transistors in a semiconductor layout (172). First, an initial placement of transistors is generated (802). Next, a candidate move of transistors is selected (804). Then the change in cost of the placement resulting from applying the candidate move is evaluated (806). A decision is made to accept the candidate move based on the evaluation of its cost (808). If accepted, the move is performed (810) and the cost of the placement is updated (812). Finally, a decision to terminate the process is made (814).

391 citations