scispace - formally typeset
Search or ask a question
Author

Lars Wöhlbrand

Bio: Lars Wöhlbrand is an academic researcher from University of Oldenburg. The author has contributed to research in topics: Biology & Proteome. The author has an hindex of 19, co-authored 39 publications receiving 889 citations.

Papers
More filters
Book ChapterDOI
TL;DR: The wealth of publications in this period is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.
Abstract: Dissimilatory sulphate reduction is the unifying and defining trait of sulphate-reducing prokaryotes (SRP). In their predominant habitats, sulphate-rich marine sediments, SRP have long been recognized to be major players in the carbon and sulphur cycles. Other, more recently appreciated, ecophysiological roles include activity in the deep biosphere, symbiotic relations, syntrophic associations, human microbiome/health and long-distance electron transfer. SRP include a high diversity of organisms, with large nutritional versatility and broad metabolic capacities, including anaerobic degradation of aromatic compounds and hydrocarbons. Elucidation of novel catabolic capacities as well as progress in the understanding of metabolic and regulatory networks, energy metabolism, evolutionary processes and adaptation to changing environmental conditions has greatly benefited from genomics, functional OMICS approaches and advances in genetic accessibility and biochemical studies. Important biotechnological roles of SRP range from (i) wastewater and off gas treatment, (ii) bioremediation of metals and hydrocarbons and (iii) bioelectrochemistry, to undesired impacts such as (iv) souring in oil reservoirs and other environments, and (v) corrosion of iron and concrete. Here we review recent advances in our understanding of SRPs focusing mainly on works published after 2000. The wealth of publications in this period, covering many diverse areas, is a testimony to the large environmental, biogeochemical and technological relevance of these organisms and how much the field has progressed in these years, although many important questions and applications remain to be explored.

224 citations

Journal ArticleDOI
TL;DR: The genome of Desulfobacula toluolica Tol2 is presented, which is the first of an aromatic compound-degrading, marine SRB and the catabolic sub-proteomes displayed high substrate specificity, reflecting the genomically predicted complex and fine-tuned regulatory network of strain Tol2.
Abstract: Among the dominant deltaproteobacterial sulfate-reducing bacteria (SRB), members of the genus Desulfobacula are not only present in (hydrocarbon-rich) marine sediments, but occur also frequently in the anoxic water bodies encountered in marine upwelling areas. Here, we present the 5.2 Mbp genome of Desulfobacula toluolica Tol2, which is the first of an aromatic compound-degrading, marine SRB. The genome has apparently been shaped by viral attacks (e.g. CRISPRs) and its high plasticity is reflected by 163 detected genes related to transposases and integrases, a total of 494 paralogous genes and 24 group II introns. Prediction of the catabolic network of strain Tol2 was refined by differential proteome and metabolite analysis of substrate-adapted cells. Toluene and p-cresol are degraded by separate suites of specific enzymes for initial arylsuccinate formation via addition to fumarate (p-cresol-specific enzyme HbsA represents a new phylogenetic branch) as well as for subsequent modified β-oxidation of arylsuccinates to the central intermediate benzoyl-CoA. Proteogenomic evidence suggests specific electron transfer (EtfAB) and membrane proteins to channel electrons from dehydrogenation of both arylsuccinates directly to the membrane redox pool. In contrast to the known anaerobic degradation pathways in other bacteria, strain Tol2 deaminates phenylalanine non-oxidatively to cinnamate by phenylalanine ammonia-lyase and subsequently forms phenylacetate (both metabolites identified in (13) C-labelling experiments). Benzoate degradation involves CoA activation, reductive dearomatization by a class II benzoyl-CoA reductase and hydrolytic ring cleavage as found in the obligate anaerobe Geobacter metallireducens GS-15. The catabolic sub-proteomes displayed high substrate specificity, reflecting the genomically predicted complex and fine-tuned regulatory network of strain Tol2. Despite the genetic equipment for a TCA cycle, proteomic evidence supports complete oxidation of acetyl-CoA to CO2 via the Wood-Ljungdahl pathway. Strain Tol2 possesses transmembrane redox complexes similar to that of other Desulfobacteraceae members. The multiple heterodisulfide reductase-like proteins (more than described for Desulfobacterium autotrophicum HRM2) may constitute a multifaceted cytoplasmic electron transfer network.

91 citations

Journal ArticleDOI
08 Mar 2016-PLOS ONE
TL;DR: Cry1b, an alternative splice variant of Cry1a, is also expressed in the retina of migratory birds, but it is primarily located in other cell types than Cry 1a, which could suggest different functions for the two splice products.
Abstract: Cryptochromes are ubiquitously expressed in various animal tissues including the retina. Some cryptochromes are involved in regulating circadian activity. Cryptochrome proteins have also been suggested to mediate the primary mechanism in light-dependent magnetic compass orientation in birds. Cryptochrome 1b (Cry1b) exhibits a unique carboxy terminus exclusively found in birds so far, which might be indicative for a specialised function. Cryptochrome 1a (Cry1a) is so far the only cryptochrome protein that has been localised to specific cell types within the retina of migratory birds. Here we show that Cry1b, an alternative splice variant of Cry1a, is also expressed in the retina of migratory birds, but it is primarily located in other cell types than Cry1a. This could suggest different functions for the two splice products. Using diagnostic bird-specific antibodies (that allow for a precise discrimination between both proteins), we show that Cry1b protein is found in the retinae of migratory European robins (Erithacus rubecula), migratory Northern Wheatears (Oenanthe oenanthe) and pigeons (Columba livia). In all three species, retinal Cry1b is localised in cell types which have been discussed as potentially well suited locations for magnetoreception: Cry1b is observed in the cytosol of ganglion cells, displaced ganglion cells, and in photoreceptor inner segments. The cytosolic rather than nucleic location of Cry1b in the retina reported here speaks against a circadian clock regulatory function of Cry1b and it allows for the possible involvement of Cry1b in a radical-pair-based magnetoreception mechanism.

59 citations

Journal ArticleDOI
TL;DR: This study reveals that two related denitrifying bacteria employ fundamentally different peripheral degradation routes for one and the same substrate, p-cymene, with the two pathways apparently converging at the level of 4-isopropylbenzoyl-CoA.
Abstract: The betaproteobacteria “Aromatoleum aromaticum” pCyN1 and “Thauera” sp. strain pCyN2 anaerobically degrade the plant-derived aromatic hydrocarbon p-cymene (4-isopropyltoluene) under nitrate-reducing conditions. Metabolite analysis of p-cymene-adapted “A. aromaticum” pCyN1 cells demonstrated the specific formation of 4-isopropylbenzyl alcohol and 4-isopropylbenzaldehyde, whereas with “Thauera” sp. pCyN2, exclusively 4-isopropylbenzylsuccinate and tentatively identified (4-isopropylphenyl)itaconate were observed. 4-Isopropylbenzoate in contrast was detected with both strains. Proteogenomic investigation of p-cymene- versus succinate-adapted cells of the two strains revealed distinct protein profiles agreeing with the different metabolites formed from p-cymene. “A. aromaticum” pCyN1 specifically produced (i) a putative p-cymene dehydrogenase (CmdABC) expected to hydroxylate the benzylic methyl group of p-cymene, (ii) two dehydrogenases putatively oxidizing 4-isopropylbenzyl alcohol (Iod) and 4-isopropylbenzaldehyde (Iad), and (iii) the putative 4-isopropylbenzoate-coenzyme A (CoA) ligase (Ibl). The p-cymene-specific protein profile of “Thauera” sp. pCyN2, on the other hand, encompassed proteins homologous to subunits of toluene-activating benzylsuccinate synthase (termed [4-isopropylbenzyl]succinate synthase IbsABCDEF; identified subunits, IbsAE) and protein homologs of the benzylsuccinate β-oxidation (Bbs) pathway (termed BisABCDEFGH; all identified except for BisEF). This study reveals that two related denitrifying bacteria employ fundamentally different peripheral degradation routes for one and the same substrate, p-cymene, with the two pathways apparently converging at the level of 4-isopropylbenzoyl-CoA.

51 citations

Journal ArticleDOI
TL;DR: This review provides an overview on the complex portfolio of state‐of‐the‐art proteomics and highlights the basic principles of key methods, ranging from sample preparation of laboratory or environmental samples, via protein/peptide separation (gel‐based or gel‐free) and different types of mass spectrometric protein/ peptide analyses, to protein identification and abundance determination.
Abstract: The steadily increasing amount of (meta-)genomic sequence information of diverse organisms and habitats has a strong impact on research in microbial physiology and ecology. In-depth functional understanding of metabolic processes and overall physiological adaptation to environmental changes, however, requires application of proteomics, as the context specific proteome constitutes the true functional output of a cell. Considering the enormous structural and functional diversity of proteins, only rational combinations of various analytical approaches allow a holistic view on the overall state of the cell. Within the past decade, proteomic methods became increasingly accessible to microbiologists mainly due to the robustness of analytical methods (e.g. 2DE), and affordability of mass spectrometers and their relative ease of use. This review provides an overview on the complex portfolio of state-of-the-art proteomics and highlights the basic principles of key methods, ranging from sample preparation of laboratory or environmental samples, via protein/peptide separation (gel-based or gel-free) and different types of mass spectrometric protein/peptide analyses, to protein identification and abundance determination.

47 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This perspective describes research opportunities and challenges ahead for this new field of research, which holds significant promise towards a biorefinery concept wherein polysaccharides and lignin are treated as equally valuable feedstocks.

483 citations

Journal ArticleDOI
TL;DR: This tutorial aims to explain the chemical and physical aspects of the radical-pair mechanism to biologists and the biological and chemical aspects to physicists and stimulate new interdisciplinary experimental and theoretical work that will shed much-needed additional light on this fascinating problem in sensory biology.
Abstract: Although it has been known for almost half a century that migratory birds can detect the direction of the Earth's magnetic field, the primary sensory mechanism behind this remarkable feat is still unclear. The leading hypothesis centers on radical pairs—magnetically sensitive chemical intermediates formed by photoexcitation of cryptochrome proteins in the retina. Our primary aim here is to explain the chemical and physical aspects of the radical-pair mechanism to biologists and the biological and chemical aspects to physicists. In doing so, we review the current state of knowledge on magnetoreception mechanisms. We dare to hope that this tutorial will stimulate new interdisciplinary experimental and theoretical work that will shed much-needed additional light on this fascinating problem in sensory biology.

476 citations

Journal ArticleDOI
16 May 2018-Nature
TL;DR: A large-scale mutagenesis screen identifies mutant phenotypes for over 11,000 protein-coding genes in bacteria that had previously not been assigned a specific function, demonstrating the scalability of microbial genetics and its utility for improving gene annotations.
Abstract: One-third of all protein-coding genes from bacterial genomes cannot be annotated with a function. Here, to investigate the functions of these genes, we present genome-wide mutant fitness data from 32 diverse bacteria across dozens of growth conditions. We identified mutant phenotypes for 11,779 protein-coding genes that had not been annotated with a specific function. Many genes could be associated with a specific condition because the gene affected fitness only in that condition, or with another gene in the same bacterium because they had similar mutant phenotypes. Of the poorly annotated genes, 2,316 had associations that have high confidence because they are conserved in other bacteria. By combining these conserved associations with comparative genomics, we identified putative DNA repair proteins; in addition, we propose specific functions for poorly annotated enzymes and transporters and for uncharacterized protein families. Our study demonstrates the scalability of microbial genetics and its utility for improving gene annotations.

399 citations

01 Sep 2010
TL;DR: In this article, an additive-multiplicative error model for peak intensities in MS/MS quantitation is proposed to address the error structure and stabilize the variance across the entire intensity range, and a correction factor can be calculated from spiked proteins at known ratios.
Abstract: iTRAQ (isobaric tags for relative or absolute quantitation) is a mass spectrometry technology that allows quantitative comparison of protein abundance by measuring peak intensities of reporter ions released from iTRAQ-tagged peptides by fragmentation during MS/MS. However, current data analysis techniques for iTRAQ struggle to report reliable relative protein abundance estimates and suffer with problems of precision and accuracy. The precision of the data is affected by variance heterogeneity: low signal data have higher relative variability; however, low abundance peptides dominate data sets. Accuracy is compromised as ratios are compressed toward 1, leading to underestimation of the ratio. This study investigated both issues and proposed a methodology that combines the peptide measurements to give a robust protein estimate even when the data for the protein are sparse or at low intensity. Our data indicated that ratio compression arises from contamination during precursor ion selection, which occurs at a consistent proportion within an experiment and thus results in a linear relationship between expected and observed ratios. We proposed that a correction factor can be calculated from spiked proteins at known ratios. Then we demonstrated that variance heterogeneity is present in iTRAQ data sets irrespective of the analytical packages, LC-MS/MS instrumentation, and iTRAQ labeling kit (4-plex or 8-plex) used. We proposed using an additive-multiplicative error model for peak intensities in MS/MS quantitation and demonstrated that a variance-stabilizing normalization is able to address the error structure and stabilize the variance across the entire intensity range. The resulting uniform variance structure simplifies the downstream analysis. Heterogeneity of variance consistent with an additive-multiplicative model has been reported in other MS-based quantitation including fields outside of proteomics; consequently the variance-stabilizing normalization methodology has the potential to increase the capabilities of MS in quantitation across diverse areas of biology and chemistry.

398 citations

Journal ArticleDOI
TL;DR: The Handbook of Environmental Chemistry as discussed by the authors is a reference source for environmental scientists and decision-makers in industry, government, agencies and public-interest groups, providing sound and solid knowledge about environmental topics from a chemical perspective.

368 citations