scispace - formally typeset
Search or ask a question
Author

László Györfi

Bio: László Györfi is an academic researcher from Budapest University of Technology and Economics. The author has contributed to research in topics: Ergodic theory & Nonparametric statistics. The author has an hindex of 34, co-authored 160 publications receiving 9796 citations. Previous affiliations of László Györfi include Katholieke Universiteit Leuven & Hungarian Academy of Sciences.


Papers
More filters
Book
01 Jan 1996
TL;DR: The Bayes Error and Vapnik-Chervonenkis theory are applied as guide for empirical classifier selection on the basis of explicit specification and explicit enforcement of the maximum likelihood principle.
Abstract: Preface * Introduction * The Bayes Error * Inequalities and alternatedistance measures * Linear discrimination * Nearest neighbor rules *Consistency * Slow rates of convergence Error estimation * The regularhistogram rule * Kernel rules Consistency of the k-nearest neighborrule * Vapnik-Chervonenkis theory * Combinatorial aspects of Vapnik-Chervonenkis theory * Lower bounds for empirical classifier selection* The maximum likelihood principle * Parametric classification *Generalized linear discrimination * Complexity regularization *Condensed and edited nearest neighbor rules * Tree classifiers * Data-dependent partitioning * Splitting the data * The resubstitutionestimate * Deleted estimates of the error probability * Automatickernel rules * Automatic nearest neighbor rules * Hypercubes anddiscrete spaces * Epsilon entropy and totally bounded sets * Uniformlaws of large numbers * Neural networks * Other error estimates *Feature extraction * Appendix * Notation * References * Index

3,598 citations

Book
16 Apr 2013
TL;DR: How to Construct Nonparametric Regression Estimates * Lower Bounds * Partitioning Estimates * Kernel Estimates * k-NN Estimates * Splitting the Sample * Cross Validation * Uniform Laws of Large Numbers
Abstract: Why is Nonparametric Regression Important? * How to Construct Nonparametric Regression Estimates * Lower Bounds * Partitioning Estimates * Kernel Estimates * k-NN Estimates * Splitting the Sample * Cross Validation * Uniform Laws of Large Numbers * Least Squares Estimates I: Consistency * Least Squares Estimates II: Rate of Convergence * Least Squares Estimates III: Complexity Regularization * Consistency of Data-Dependent Partitioning Estimates * Univariate Least Squares Spline Estimates * Multivariate Least Squares Spline Estimates * Neural Networks Estimates * Radial Basis Function Networks * Orthogonal Series Estimates * Advanced Techniques from Empirical Process Theory * Penalized Least Squares Estimates I: Consistency * Penalized Least Squares Estimates II: Rate of Convergence * Dimension Reduction Techniques * Strong Consistency of Local Averaging Estimates * Semi-Recursive Estimates * Recursive Estimates * Censored Observations * Dependent Observations

1,931 citations

Journal ArticleDOI
TL;DR: Differentiation of Integrals Consistency Lower bounds for rates of convergence rates of Convergence in L1 and Pointwise Convergence estimates Related to the Kernel Estimate and the Histogram Estimate Simulation, Inequalities, and Random Variate Generation The Transformed Kernel Estimation Applications in Discrimination Operations on Density Estimates Estimators Based on Orthogonal Series Index as mentioned in this paper.
Abstract: Differentiation of Integrals Consistency Lower Bounds for Rates of Convergence Rates of Convergence in L1 The Automatic Kernel Estimate: L1 and Pointwise Convergence Estimates Related to the Kernel Estimate and the Histogram Estimate Simulation, Inequalities, and Random Variate Generation The Transformed Kernel Estimate Applications in Discrimination Operations on Density Estimates Estimators Based on Orthogonal Series Index.

852 citations

01 Jan 1997
TL;DR: This research assumes that H(f) is well-defined and is finite, and the concept of differential entropy was introduced in Shannon’s original paper ([55]).
Abstract: We assume that H(f) is well-defined and is finite. The concept of differential entropy was introduced in Shannon’s original paper ([55]). Since then, entropy has been of great theoretical and applied interest. The basic properties ∗This research was supported by the Scientific Exchange Program between the Belgian Academy of Sciences and the Hungarian Academy of Sciences in the field of Mathematical Information Theory, and NATO Research Grant No. CRG 931030.

695 citations

Journal ArticleDOI
TL;DR: It is shown that all modes of convergence in L 1 are equivalent if the regression variable is bounded and under the additional condition k/log n → ∞ the strong universal consistency of the estimate is obtained.
Abstract: Two results are presented concerning the consistency of the $k$-nearest neighbor regression estimate. We show that all modes of convergence in $L_1$ (in probability, almost sure, complete) are equivalent if the regression variable is bounded. Under the additional conditional $k/\log n \rightarrow \infty$ we also obtain the strong universal consistency of the estimate.

286 citations


Cited by
More filters
Book
25 Oct 1999
TL;DR: This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining.
Abstract: Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. *Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects *Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods *Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks-in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

20,196 citations

Journal ArticleDOI
TL;DR: There are several arguments which support the observed high accuracy of SVMs, which are reviewed and numerous examples and proofs of most of the key theorems are given.
Abstract: The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization performance is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired by these arguments are also presented. We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that the reader will find that even old material is cast in a fresh light.

15,696 citations

Book
23 Nov 2005
TL;DR: The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics, and deals with the supervised learning problem for both regression and classification.
Abstract: A comprehensive and self-contained introduction to Gaussian processes, which provide a principled, practical, probabilistic approach to learning in kernel machines. Gaussian processes (GPs) provide a principled, practical, probabilistic approach to learning in kernel machines. GPs have received increased attention in the machine-learning community over the past decade, and this book provides a long-needed systematic and unified treatment of theoretical and practical aspects of GPs in machine learning. The treatment is comprehensive and self-contained, targeted at researchers and students in machine learning and applied statistics. The book deals with the supervised-learning problem for both regression and classification, and includes detailed algorithms. A wide variety of covariance (kernel) functions are presented and their properties discussed. Model selection is discussed both from a Bayesian and a classical perspective. Many connections to other well-known techniques from machine learning and statistics are discussed, including support-vector machines, neural networks, splines, regularization networks, relevance vector machines and others. Theoretical issues including learning curves and the PAC-Bayesian framework are treated, and several approximation methods for learning with large datasets are discussed. The book contains illustrative examples and exercises, and code and datasets are available on the Web. Appendixes provide mathematical background and a discussion of Gaussian Markov processes.

11,357 citations

Journal ArticleDOI
TL;DR: This tutorial gives an overview of the basic ideas underlying Support Vector (SV) machines for function estimation, and includes a summary of currently used algorithms for training SV machines, covering both the quadratic programming part and advanced methods for dealing with large datasets.
Abstract: In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modifications and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization from a SV perspective.

10,696 citations

Journal ArticleDOI
TL;DR: The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.
Abstract: The primary goal of pattern recognition is supervised or unsupervised classification. Among the various frameworks in which pattern recognition has been traditionally formulated, the statistical approach has been most intensively studied and used in practice. More recently, neural network techniques and methods imported from statistical learning theory have been receiving increasing attention. The design of a recognition system requires careful attention to the following issues: definition of pattern classes, sensing environment, pattern representation, feature extraction and selection, cluster analysis, classifier design and learning, selection of training and test samples, and performance evaluation. In spite of almost 50 years of research and development in this field, the general problem of recognizing complex patterns with arbitrary orientation, location, and scale remains unsolved. New and emerging applications, such as data mining, web searching, retrieval of multimedia data, face recognition, and cursive handwriting recognition, require robust and efficient pattern recognition techniques. The objective of this review paper is to summarize and compare some of the well-known methods used in various stages of a pattern recognition system and identify research topics and applications which are at the forefront of this exciting and challenging field.

6,527 citations