scispace - formally typeset
Search or ask a question
Author

László Virág

Bio: László Virág is an academic researcher from University of Szeged. The author has contributed to research in topics: Poly ADP ribose polymerase & Apoptosis. The author has an hindex of 57, co-authored 201 publications receiving 11934 citations. Previous affiliations of László Virág include University of Debrecen & University of Medicine and Dentistry of New Jersey.


Papers
More filters
Journal ArticleDOI
TL;DR: The double-edged sword roles of PARP in DNA damage signaling and cell death are reviewed and the underlying mechanisms of the anti-inflammatory effects ofPARP inhibitors are summarized.
Abstract: Poly(ADP-ribose) polymerase-1 (PARP-1) is a member of the PARP enzyme family consisting of PARP-1 and several recently identified novel poly(ADP-ribosylating) enzymes. PARP-1 is an abundant nuclear protein functioning as a DNA nick-sensor enzyme. Upon binding to DNA breaks, activated PARP cleaves NAD(+) into nicotinamide and ADP-ribose and polymerizes the latter onto nuclear acceptor proteins including histones, transcription factors, and PARP itself. Poly(ADP-ribosylation) contributes to DNA repair and to the maintenance of genomic stability. On the other hand, oxidative stress-induced overactivation of PARP consumes NAD(+) and consequently ATP, culminating in cell dysfunction or necrosis. This cellular suicide mechanism has been implicated in the pathomechanism of stroke, myocardial ischemia, diabetes, diabetes-associated cardiovascular dysfunction, shock, traumatic central nervous system injury, arthritis, colitis, allergic encephalomyelitis, and various other forms of inflammation. PARP has also been shown to associate with and regulate the function of several transcription factors. Of special interest is the enhancement by PARP of nuclear factor kappa B-mediated transcription, which plays a central role in the expression of inflammatory cytokines, chemokines, adhesion molecules, and inflammatory mediators. Herein we review the double-edged sword roles of PARP in DNA damage signaling and cell death and summarize the underlying mechanisms of the anti-inflammatory effects of PARP inhibitors. Moreover, we discuss the potential use of PARP inhibitors as anticancer agents, radiosensitizers, and antiviral agents.

1,410 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported that activation of poly(ADP-ribose) polymerase (PARP) is an important factor in the pathogenesis of endothelial dysfunction in diabetes.
Abstract: Diabetic patients frequently suffer from retinopathy, nephropathy, neuropathy and accelerated atherosclerosis. The loss of endothelial function precedes these vascular alterations. Here we report that activation of poly(ADP-ribose) polymerase (PARP) is an important factor in the pathogenesis of endothelial dysfunction in diabetes. Destruction of islet cells with streptozotocin in mice induced hyperglycemia, intravascular oxidant production, DNA strand breakage, PARP activation and a selective loss of endothelium-dependent vasodilation. Treatment with a novel potent PARP inhibitor, starting after the time of islet destruction, maintained normal vascular responsiveness, despite the persistence of severe hyperglycemia. Endothelial cells incubated in high glucose exhibited production of reactive nitrogen and oxygen species, consequent single-strand DNA breakage, PARP activation and associated metabolic and functional impairment. Basal and high-glucose-induced nuclear factor-kappaB activation were suppressed in the PARP-deficient cells. Our results indicate that PARP may be a novel drug target for the therapy of diabetic endothelial dysfunction.

601 citations

Journal ArticleDOI
TL;DR: The cytotoxic effects (apoptosis and necrosis) of peroxynitrite are reviewed focusing on the role of accelerated ADP-ribose turnover and regulatory mechanisms of per oxynitrites-induced cytotoxicity such as antioxidant status, calcium signalling, NFkappaB activation, protein phosphorylation, cellular adaptation are discussed.

453 citations

Journal ArticleDOI
TL;DR: Inosine suppressed proinflammatory cytokine production and mortality in a mouse endotoxemic model and suggests that this agent may be useful in the treatment of inflammatory/ischemic diseases.
Abstract: Extracellular purines, including adenosine and ATP, are potent endogenous immunomodulatory molecules. Inosine, a degradation product of these purines, can reach high concentrations in the extracellular space under conditions associated with cellular metabolic stress such as inflammation or ischemia. In the present study, we investigated whether extracellular inosine can affect inflammatory/immune processes. In immunostimulated macrophages and spleen cells, inosine potently inhibited the production of the proinflammatory cytokines TNF-alpha, IL-1, IL-12, macrophage-inflammatory protein-1alpha, and IFN-gamma, but failed to alter the production of the anti-inflammatory cytokine IL-10. The effect of inosine did not require cellular uptake by nucleoside transporters and was partially reversed by blockade of adenosine A1 and A2 receptors. Inosine inhibited cytokine production by a posttranscriptional mechanism. The activity of inosine was independent of activation of the p38 and p42/p44 mitogen-activated protein kinases, the phosphorylation of the c-Jun terminal kinase, the degradation of inhibitory factor kappaB, and elevation of intracellular cAMP. Inosine suppressed proinflammatory cytokine production and mortality in a mouse endotoxemic model. Taken together, inosine has multiple anti-inflammatory effects. These findings, coupled with the fact that inosine has very low toxicity, suggest that this agent may be useful in the treatment of inflammatory/ischemic diseases.

301 citations

Journal Article
TL;DR: A stimulus-dependent role of resident MCs inChemokine production and the existence of a regulatory loop between endogenous IL-10 and the chemokine-mediated cellular component of acute inflammation are proposed.
Abstract: The roles played by resident macrophages (Mphi) and mast cells (MCs) in polymorphonuclear leukocyte (PMN) accumulation and chemokine production within the mouse peritoneal cavity in response to administration of zymosan (0.2 and 1 mg), LPS (1 mg/kg), and thioglycolate (0.5 ml of a 3% suspension) were investigated. A marked reduction (>95%) in intact MC numbers was obtained by pretreatment with the MC activator compound 48/80, whereas resident Mphi were greatly diminished (>85%) by a 3-day treatment with liposomes encapsulating the cytotoxic drug dichloromethylene-bisphosphonate. No modulation of thioglycolate-induced inflammation was seen with either pretreatment. Removal of either MCs or Mphi attenuated LPS-induced PMN extravasation without affecting the levels of the chemokines murine monocyte chemoattractant protein-1 and KC measured in the lavage fluids. In contrast, MC depletion inhibited PMN accumulation and murine monocyte chemoattractant protein-1 and KC production in the zymosan peritonitis model. Removal of Mphi augmented the accumulation of PMN elicited by the latter stimulus. This was due to an inhibitory action of Mphi-derived IL-10 because there was 1) a time-dependent release of IL-10 in the zymosan exudates; 2) a reduction in IL-10 levels following Mphi, but not MC, depletion; and 3) an increased PMN influx and chemokine production in IL-10 knockout mice. In conclusion, we propose a stimulus-dependent role of resident MCs in chemokine production and the existence of a regulatory loop between endogenous IL-10 and the chemokine-mediated cellular component of acute inflammation.

299 citations


Cited by
More filters
Journal ArticleDOI
13 Dec 2001-Nature
TL;DR: This integrating paradigm provides a new conceptual framework for future research and drug discovery in diabetes-specific microvascular disease and seems to reflect a single hyperglycaemia-induced process of overproduction of superoxide by the mitochondrial electron-transport chain.
Abstract: Diabetes-specific microvascular disease is a leading cause of blindness, renal failure and nerve damage, and diabetes-accelerated atherosclerosis leads to increased risk of myocardial infarction, stroke and limb amputation. Four main molecular mechanisms have been implicated in glucose-mediated vascular damage. All seem to reflect a single hyperglycaemia-induced process of overproduction of superoxide by the mitochondrial electron-transport chain. This integrating paradigm provides a new conceptual framework for future research and drug discovery.

8,289 citations

Journal ArticleDOI
TL;DR: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors.
Abstract: The 11th edition of Harrison's Principles of Internal Medicine welcomes Anthony Fauci to its editorial staff, in addition to more than 85 new contributors. While the organization of the book is similar to previous editions, major emphasis has been placed on disorders that affect multiple organ systems. Important advances in genetics, immunology, and oncology are emphasized. Many chapters of the book have been rewritten and describe major advances in internal medicine. Subjects that received only a paragraph or two of attention in previous editions are now covered in entire chapters. Among the chapters that have been extensively revised are the chapters on infections in the compromised host, on skin rashes in infections, on many of the viral infections, including cytomegalovirus and Epstein-Barr virus, on sexually transmitted diseases, on diabetes mellitus, on disorders of bone and mineral metabolism, and on lymphadenopathy and splenomegaly. The major revisions in these chapters and many

6,968 citations

Journal ArticleDOI
TL;DR: This unit discusses mammalian Toll receptors (TLR1‐10) that have an essential role in the innate immune recognition of microorganisms and are discussed are TLR‐mediated signaling pathways and antibodies that are available to detect specific TLRs.
Abstract: The innate immune system in drosophila and mammals senses the invasion of microorganisms using the family of Toll receptors, stimulation of which initiates a range of host defense mechanisms. In drosophila antimicrobial responses rely on two signaling pathways: the Toll pathway and the IMD pathway. In mammals there are at least 10 members of the Toll-like receptor (TLR) family that recognize specific components conserved among microorganisms. Activation of the TLRs leads not only to the induction of inflammatory responses but also to the development of antigen-specific adaptive immunity. The TLR-induced inflammatory response is dependent on a common signaling pathway that is mediated by the adaptor molecule MyD88. However, there is evidence for additional pathways that mediate TLR ligand-specific biological responses.

5,915 citations

Journal ArticleDOI
TL;DR: Current evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion, which is presented in detail in this review.
Abstract: The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.

5,514 citations

Journal ArticleDOI
01 Nov 2016-Europace
TL;DR: The Task Force for the management of atrial fibrillation of the European Society of Cardiology has been endorsed by the European Stroke Organisation (ESO).
Abstract: The Task Force for the management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC Endorsed by the European Stroke Organisation (ESO)

5,255 citations