scispace - formally typeset
Search or ask a question
Author

Latha A. Gearheart

Other affiliations: Presbyterian College
Bio: Latha A. Gearheart is an academic researcher from University of South Carolina. The author has contributed to research in topics: Nanorod & Colloidal gold. The author has an hindex of 14, co-authored 18 publications receiving 9308 citations. Previous affiliations of Latha A. Gearheart include Presbyterian College.

Papers
More filters
Journal ArticleDOI
TL;DR: Arc-synthesized single-walled carbon nanotubes have been purified through preparative electrophoresis in agarose gel and glass bead matrixes and promise to be interesting nanomaterials in their own right.
Abstract: Arc-synthesized single-walled carbon nanotubes have been purified through preparative electrophoresis in agarose gel and glass bead matrixes. Two major impurities were isolated: fluorescent carbon and short tubular carbon. Analysis of these two classes of impurities was done. The methods described may be readily extended to the separation of other water-soluble nanoparticles. The separated fluorescent carbon and short tubule carbon species promise to be interesting nanomaterials in their own right.

3,357 citations

Journal ArticleDOI
TL;DR: Gold nanorods with aspect ratios of 4.6 ± 1.2, 13 ± 2, and 18 ± 2.5 are prepared by a seeding growth approach in the presence of an aqueous miceller template.
Abstract: Gold nanorods with aspect ratios of 4.6 ± 1.2, 13 ± 2, and 18 ± 2.5 (all with 16 ± 3 nm short axis) are prepared by a seeding growth approach in the presence of an aqueous miceller template. Citrate-capped 3.5 nm diameter gold particles, prepared by the reduction of HAuCl4 with borohydride, are used as the seed. The aspect ratio of the nanorods is controlled by varying the ratio of seed to metal salt. The long rods are isolated from spherical particles by centrifugation.

2,428 citations

Journal ArticleDOI
TL;DR: In this article, the authors estimate the time it takes for the polymer melt to fill up the void space between the mold and the polymer film, such that the time is given by t ˆ 2 z 2 2
Abstract: the cross-sectional SEM image, the contact angle is estimated to be about 85 . When we insert into Equation 1 the surface tension (~30 dyne/cm) and density (0.95 g/cm) of SBS and L of 300 nm, a maximum height of 1.87 m is obtained, which indicates that the height of the patterned polymer can be made quite large. In fact, we were able to fabricate polymer structures with a step height as high as 5 lm for an 80 lm line-and-space pattern. If we take into account the interaction at the polymer/substrate interface and the solid-like properties of the polymer melt, the theoretical maximum height would be reduced. For a more accurate model, further study would be required. The time it takes for the polymer melt to fill up the void space between the mold and the polymer film can be estimated. If we neglect the effect of gravity, then the surface tension and viscosity of the polymer melt and the size of the capillary determine the rate of flow such that the time is given by t ˆ 2 z 2

1,626 citations

Journal ArticleDOI
TL;DR: Using a seed-mediated growth approach in a rod-like micellar media, silver nanorods of varied aspect ratio were prepared from nearly spherical 4 nm silver nanoparticles as mentioned in this paper.

1,127 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the seed-mediated growth of gold nanoparticles by transmission electron microscopy and electronic absorption spectroscopy and found that changing the seed concentration does affect the size of the product nanoparticles, but the method of reagent addition drastically affects the outcome even more.
Abstract: Central to the concept of seed-mediated growth of nanoparticles is that small nanoparticle seeds serve as nucleation centers to grow nanoparticles to a desired size. We have examined this common assumption in a model system, the wet chemical synthesis of gold nanoparticles via reduction of a gold salt, by transmission electron microscopy and electronic absorption spectroscopy. We find that changing the seed concentration does affect the size of the product nanoparticles, but the method of reagent addition drastically affects the outcome even more. For fast addition of reducing agent, the presence of seeds appears to promote the formation of more seeds instead of growth. The observed nucleations are drastically enhanced (99%) compared to particle growth. For slow addition of reducing agent, the seeds do grow, but the product nanoparticle's degree of homogeneity in shape is compromised. For higher concentrations of seeds, nanoparticle growth is better controlled for slow addition of reducing agent compared ...

649 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

Journal ArticleDOI
TL;DR: A comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals, including a brief introduction to nucleation and growth within the context of metal Nanocrystal synthesis, followed by a discussion of the possible shapes that aMetal nanocrystal might take under different conditions.
Abstract: Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

4,927 citations

Journal ArticleDOI
TL;DR: In this article, a method was used for preparing gold NRs with aspect ratios ranging from 1.5 to 4.5 for which the surface plasmon absorption maxima are between 600 and 1300 nm.
Abstract: A method is used for preparing gold NRs with aspect ratios ranging from 1.5 to 10 for which the surface plasmon absorption maxima are between 600 and 1300 nm. This method has been adapted from a previously published seed-mediated growth method (Jana et al. Adv. Mater. 2001, 13, 1389). The disadvantages and limitations of the earlier method (i.e., formation of noncylindrical NRs, φ-shaped particles, and formation of a large fraction of spherical particles) have been overcome by use of a hexadecyltrimethylammonium bromide (CTAB)-capped seed instead of a citrate-capped one. In a single-component surfactant system, the silver content of the growth solution was used to grow NRs to a desired length. This results in reproducible formation of NRs with aspect ratios ranging from 1.5 to 4.5. To grow longer NRs with aspect ratios ranging from 4.6 to 10, a binary surfactant mixture composed of benzyldimethylhexadecylammoniumchloride (BDAC) and CTAB was used. NRs are grown in this mixture either by aging or by additio...

4,645 citations

Journal ArticleDOI
TL;DR: While nanorods with a higher aspect ratio along with a smaller effective radius are the best photoabsorbing nanoparticles, the highest scattering contrast for imaging applications is obtained from nanorod of high aspect ratio with a larger effective radius.
Abstract: The selection of nanoparticles for achieving efficient contrast for biological and cell imaging applications, as well as for photothermal therapeutic applications, is based on the optical properties of the nanoparticles. We use Mie theory and discrete dipole approximation method to calculate absorption and scattering efficiencies and optical resonance wavelengths for three commonly used classes of nanoparticles: gold nanospheres, silica−gold nanoshells, and gold nanorods. The calculated spectra clearly reflect the well-known dependence of nanoparticle optical properties viz. the resonance wavelength, the extinction cross-section, and the ratio of scattering to absorption, on the nanoparticle dimensions. A systematic quantitative study of the various trends is presented. By increasing the size of gold nanospheres from 20 to 80 nm, the magnitude of extinction as well as the relative contribution of scattering to the extinction rapidly increases. Gold nanospheres in the size range commonly employed (∼40 nm)...

4,065 citations