scispace - formally typeset
Search or ask a question
Author

Laura Colombo

Other affiliations: University of Siena
Bio: Laura Colombo is an academic researcher from Mario Negri Institute for Pharmacological Research. The author has contributed to research in topics: Amyloid & P3 peptide. The author has an hindex of 34, co-authored 105 publications receiving 4196 citations. Previous affiliations of Laura Colombo include University of Siena.


Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that, in mice, acute intracerebroventricular injections of synthetic Aβ1–42 oligomers impaired consolidation of the long-term recognition memory, whereas mature Aβ 1–42 fibrils and freshly dissolved peptide did not, and it was confirmed that A β1– 42 oligomers interact with PrPC, with nanomolar affinity.
Abstract: Inability to form new memories is an early clinical sign of Alzheimer’s disease (AD). There is ample evidence that the amyloid-β (Aβ) peptide plays a key role in the pathogenesis of this disorder. Soluble, bio-derived oligomers of Aβ are proposed as the key mediators of synaptic and cognitive dysfunction, but more tractable models of Aβ−mediated cognitive impairment are needed. Here we report that, in mice, acute intracerebroventricular injections of synthetic Aβ1–42 oligomers impaired consolidation of the long-term recognition memory, whereas mature Aβ1–42 fibrils and freshly dissolved peptide did not. The deficit induced by oligomers was reversible and was prevented by an anti-Aβ antibody. It has been suggested that the cellular prion protein (PrPC) mediates the impairment of synaptic plasticity induced by Aβ. We confirmed that Aβ1–42 oligomers interact with PrPC, with nanomolar affinity. However, PrP-expressing and PrP knock-out mice were equally susceptible to this impairment. These data suggest that Aβ1–42 oligomers are responsible for cognitive impairment in AD and that PrPC is not required.

454 citations

Journal ArticleDOI
13 Mar 2009-Science
TL;DR: An APP mutation that causes disease only in the homozygous state, whereas heterozygous carriers were unaffected, consistent with a recessive Mendelian trait of inheritance is found, with implications for genetic screening and the potential treatment of Alzheimer's disease.
Abstract: beta-Amyloid precursor protein (APP) mutations cause familial Alzheimer's disease with nearly complete penetrance. We found an APP mutation [alanine-673-->valine-673 (A673V)] that causes disease only in the homozygous state, whereas heterozygous carriers were unaffected, consistent with a recessive Mendelian trait of inheritance. The A673V mutation affected APP processing, resulting in enhanced beta-amyloid (Abeta) production and formation of amyloid fibrils in vitro. Co-incubation of mutated and wild-type peptides conferred instability on Abeta aggregates and inhibited amyloidogenesis and neurotoxicity. The highly amyloidogenic effect of the A673V mutation in the homozygous state and its anti-amyloidogenic effect in the heterozygous state account for the autosomal recessive pattern of inheritance and have implications for genetic screening and the potential treatment of Alzheimer's disease.

381 citations

Journal ArticleDOI
TL;DR: The results indicate that drugs with a well‐known clinical profile, including activity in the central nervous system, are potentially useful for Alzheimer's therapy.

249 citations

Journal ArticleDOI
TL;DR: SIRT1 activation by RES can prevent in the neuroblastoma model the deleterious effects triggered by oxidative stress or α‐syn(A30P) aggregation, while RES displayed a SIRT1‐independent protective action against Aβ42.
Abstract: Human sirtuins are a family of seven conserved proteins (SIRT1-7). The most investigated is the silent mating type information regulation-2 homolog (SIRT1, NM_012238), which was associated with neuroprotection in models of polyglutamine toxicity or Alzheimer's disease (AD) and whose activation by the phytocompound resveratrol (RES) has been described. We have examined the neuroprotective role of RES in a cellular model of oxidative stress, a common feature of neurodegeneration. RES prevented toxicity triggered by hydrogen peroxide or 6-hydroxydopamine (6-OHDA). This action was likely mediated by SIRT1 activation, as the protection was lost in the presence of the SIRT1 inhibitor sirtinol and when SIRT1 expression was down-regulated by siRNA approach. RES was also able to protect SK-N-BE from the toxicity arising from two aggregation-prone proteins, the AD-involved amyloid-beta (1-42) peptide (Abeta42) and the familiar Parkinson's disease linked alpha-synuclein(A30P) [alpha-syn(A30P)]. Alpha-syn(A30P) toxicity was restored by sirtinol addition, while a partial RES protective effect against Abeta42 was found even in presence of sirtinol, thus suggesting a direct RES effect on Abeta42 fibrils. We conclude that SIRT1 activation by RES can prevent in our neuroblastoma model the deleterious effects triggered by oxidative stress or alpha-syn(A30P) aggregation, while RES displayed a SIRT1-independent protective action against Abeta42.

237 citations

Journal ArticleDOI
TL;DR: Despite its ability to cross the blood-brain barrier, the use of quinacrine for the treatment of CJD is questionable, at least as a monotherapy, and the multistep experimental approach employed here could be used to test new therapeutic regimes before their use in human trials.
Abstract: Based on in vitro observations in scrapie-infected neuroblastoma cells, quinacrine has recently been proposed as a treatment for Creutzfeldt-Jakob disease (CJD), including a new variant CJD which is linked to contamination of food by the bovine spongiform encephalopathy (BSE) agent. The present study investigated possible mechanisms of action of quinacrine on prions. The ability of quinacrine to interact with and to reduce the protease resistance of PrP peptide aggregates and PrPres of human and animal origin were analyzed, together with its ability to inhibit the in vitro conversion of the normal prion protein (PrPc) to the abnormal form (PrPres). Furthermore, the efficiencies of quinacrine and chlorpromazine, another tricyclic compound, were examined in different in vitro models and in an experimental murine model of BSE. Quinacrine efficiently hampered de novo generation of fibrillogenic prion protein and PrPres accumulation in ScN2a cells. However, it was unable to affect the protease resistance of preexisting PrP fibrils and PrPres from brain homogenates, and a “curing” effect was obtained in ScGT1 cells only after lengthy treatment. In vivo, no detectable effect was observed in the animal model used, consistent with other recent studies and preliminary observations in humans. Despite its ability to cross the blood-brain barrier, the use of quinacrine for the treatment of CJD is questionable, at least as a monotherapy. The multistep experimental approach employed here could be used to test new therapeutic regimes before their use in human trials.

199 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review describes this field of science with particular reference to the advances that have been made over the last decade in understanding of its fundamental nature and consequences and shows evidence that a complex proteostasis network actively combats protein aggregation.
Abstract: Peptides and proteins have been found to possess an inherent tendency to convert from their native functional states into intractable amyloid aggregates. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidoses. In this review, we describe this field of science with particular reference to the advances that have been made over the last decade in our understanding of its fundamental nature and consequences. We list the proteins that are known to be deposited as amyloid or other types of aggregates in human tissues and the disorders with which they are associated, as well as the proteins that exploit the amyloid motif to play specific functional roles in humans. In addition, we summarize the genetic factors that have provided insight into the mechanisms of disease onset. We describe recent advances in our knowledge of the structures of amyloid fibrils and their oligomeric precursors a...

1,727 citations

Journal ArticleDOI
02 Aug 2012-Nature
TL;DR: The strong protective effect of the A673T substitution against Alzheimer’s disease provides proof of principle for the hypothesis that reducing the β-cleavage of APP may protect against the disease.
Abstract: The prevalence of dementia in the Western world in people over the age of 60 has been estimated to be greater than 5%, about two-thirds of which are due to Alzheimer's disease. The age-specific prevalence of Alzheimer's disease nearly doubles every 5 years after age 65, leading to a prevalence of greater than 25% in those over the age of 90 (ref. 3). Here, to search for low-frequency variants in the amyloid-β precursor protein (APP) gene with a significant effect on the risk of Alzheimer's disease, we studied coding variants in APP in a set of whole-genome sequence data from 1,795 Icelanders. We found a coding mutation (A673T) in the APP gene that protects against Alzheimer's disease and cognitive decline in the elderly without Alzheimer's disease. This substitution is adjacent to the aspartyl protease β-site in APP, and results in an approximately 40% reduction in the formation of amyloidogenic peptides in vitro. The strong protective effect of the A673T substitution against Alzheimer's disease provides proof of principle for the hypothesis that reducing the β-cleavage of APP may protect against the disease. Furthermore, as the A673T allele also protects against cognitive decline in the elderly without Alzheimer's disease, the two may be mediated through the same or similar mechanisms.

1,578 citations

Journal ArticleDOI
TL;DR: The aim of this article is to review the literature on the molecular mechanism of protein misfolding and aggregation, its role in Neurodegeneration and the potential targets for therapeutic intervention in neurodegenerative diseases.
Abstract: Recent evidence indicates that diverse neurodegenerative diseases might have a common cause and pathological mechanism — the misfolding, aggregation and accumulation of proteins in the brain, resulting in neuronal apoptosis. Studies from different disciplines strongly support this hypothesis and indicate that a common therapy for these devastating disorders might be possible. The aim of this article is to review the literature on the molecular mechanism of protein misfolding and aggregation, its role in neurodegeneration and the potential targets for therapeutic intervention in neurodegenerative diseases. Many questions still need to be answered and future research in this field will result in exciting new discoveries that might impact other areas of biology.

1,355 citations

Journal ArticleDOI
TL;DR: This poster aims to demonstrate the efforts towards in-situ applicability of EMMARM, which aims to provide real-time information about the physical and cognitive properties of Alzheimer's disease and other dementias.
Abstract: Defeating Alzheimer's disease and other dementias : a priority for European science and society

1,215 citations

Journal ArticleDOI
08 Feb 2018-Nature
TL;DR: The measurement of high-performance plasma amyloid-β biomarkers by immunoprecipitation coupled with mass spectrometry demonstrates the potential clinical utility of plasma biomarkers in predicting brain amyloids-β burden at an individual level and shows cost–benefit and scalability advantages over current techniques.
Abstract: To facilitate clinical trials of disease-modifying therapies for Alzheimer's disease, which are expected to be most efficacious at the earliest and mildest stages of the disease, supportive biomarker information is necessary. The only validated methods for identifying amyloid-β deposition in the brain-the earliest pathological signature of Alzheimer's disease-are amyloid-β positron-emission tomography (PET) imaging or measurement of amyloid-β in cerebrospinal fluid. Therefore, a minimally invasive, cost-effective blood-based biomarker is desirable. Despite much effort, to our knowledge, no study has validated the clinical utility of blood-based amyloid-β markers. Here we demonstrate the measurement of high-performance plasma amyloid-β biomarkers by immunoprecipitation coupled with mass spectrometry. The ability of amyloid-β precursor protein (APP)669-711/amyloid-β (Aβ)1-42 and Aβ1-40/Aβ1-42 ratios, and their composites, to predict individual brain amyloid-β-positive or -negative status was determined by amyloid-β-PET imaging and tested using two independent data sets: a discovery data set (Japan, n = 121) and a validation data set (Australia, n = 252 including 111 individuals diagnosed using 11C-labelled Pittsburgh compound-B (PIB)-PET and 141 using other ligands). Both data sets included cognitively normal individuals, individuals with mild cognitive impairment and individuals with Alzheimer's disease. All test biomarkers showed high performance when predicting brain amyloid-β burden. In particular, the composite biomarker showed very high areas under the receiver operating characteristic curves (AUCs) in both data sets (discovery, 96.7%, n = 121 and validation, 94.1%, n = 111) with an accuracy approximately equal to 90% when using PIB-PET as a standard of truth. Furthermore, test biomarkers were correlated with amyloid-β-PET burden and levels of Aβ1-42 in cerebrospinal fluid. These results demonstrate the potential clinical utility of plasma biomarkers in predicting brain amyloid-β burden at an individual level. These plasma biomarkers also have cost-benefit and scalability advantages over current techniques, potentially enabling broader clinical access and efficient population screening.

1,049 citations