scispace - formally typeset
Search or ask a question
Author

Laura J. Brattain

Other affiliations: Harvard University
Bio: Laura J. Brattain is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Computer science & Image processing. The author has an hindex of 10, co-authored 40 publications receiving 342 citations. Previous affiliations of Laura J. Brattain include Harvard University.

Papers
More filters
Journal ArticleDOI
TL;DR: Leading machine learning approaches and research directions in US are reviewed, with an emphasis on recent ML advances, and an outlook on future opportunities for ML techniques to further improve clinical workflow and US-based disease diagnosis and characterization is presented.
Abstract: Ultrasound (US) imaging is the most commonly performed cross-sectional diagnostic imaging modality in the practice of medicine. It is low-cost, non-ionizing, portable, and capable of real-time image acquisition and display. US is a rapidly evolving technology with significant challenges and opportunities. Challenges include high inter- and intra-operator variability and limited image quality control. Tremendous opportunities have arisen in the last decade as a result of exponential growth in available computational power coupled with progressive miniaturization of US devices. As US devices become smaller, enhanced computational capability can contribute significantly to decreasing variability through advanced image processing. In this paper, we review leading machine learning (ML) approaches and research directions in US, with an emphasis on recent ML advances. We also present our outlook on future opportunities for ML techniques to further improve clinical workflow and US-based disease diagnosis and characterization.

147 citations

Journal ArticleDOI
TL;DR: Algorithms to evaluate the presence or absence of “B‐lines” on thoracic sonography as a marker for interstitial fluid and a perfect match was achieved, believed to be the first reported results in computerized B‐line scoring.
Abstract: With the proliferation of portable sonography and the increase in nontraditional users, there is an increased need for automated decision support to standardize results. We developed algorithms to evaluate the presence or absence of "B-lines" on thoracic sonography as a marker for interstitial fluid. Algorithm performance was compared against an average of scores from 2 expert clinical sonographers. On the set for algorithm development, 90% of the scores matched the average expert scores with differences of 1 or less. On the independent set, a perfect match was achieved. We believe that these are the first reported results in computerized B-line scoring.

61 citations

Proceedings ArticleDOI
18 Jul 2018
TL;DR: A deep convolutional neural network is used to simultaneously learn features and classification, eliminating the multiple hand-tuned steps of alignment, image processing, image corrections, handcrafted feature extraction, and classification in this work.
Abstract: Initial results are reported on automated detection of intracranial hemorrhage from CT, which would be valuable in a computer-aided diagnosis system to help the radiologist detect subtle hemorrhages. Previous work has taken a classic approach involving multiple steps of alignment, image processing, image corrections, handcrafted feature extraction, and classification. Our current work instead uses a deep convolutional neural network to simultaneously learn features and classification, eliminating the multiple hand-tuned steps. Performance is improved by computing the mean output for rotations of the input image. Postprocessing is additionally applied to the CNN output to significantly improve specificity. The database consists of 134 CT cases (4,300 images), divided into 60, 5, and 69 cases for training, validation, and test. Each case typically includes multiple hemorrhages. Performance on the test set was 81% sensitivity per lesion (34/42 lesions) and 98% specificity per case (45/46 cases). The sensitivity is comparable to previous results (on different datasets), but with a significantly higher specificity. In addition, insights are shared to improve performance as the database is expanded.

58 citations

Journal ArticleDOI
01 Feb 2017
TL;DR: A system for automatically pointing ultrasound (US) imaging catheters will enable clinicians to monitor anatomical structures and track instruments during interventional procedures and was validated on a robotic test bed by steering the catheter within a water environment containing phantom objects.
Abstract: A system for automatically pointing ultrasound (US) imaging catheters will enable clinicians to monitor anatomical structures and track instruments during interventional procedures. Off-the-shelf US catheters provide high-quality US images from within the patient. While this method of imaging has been proven to be effective for guiding many interventional treatments, significant training is required to overcome the difficulty in manually steering the imager to point at desired structures. Our system uses closed-form four degree-of-freedom (DOF) kinematic solutions to automatically position the US catheter and point the imager. Algorithms for steering and imager pointing were developed for a range of useful diagnostic and interventional motions. The system was validated on a robotic test bed by steering the catheter within a water environment containing phantom objects. While the system described here was designed for pointing US catheters, these algorithms are applicable to accurate 4-DOF steering and orientation control of any long thin tendon-driven tool with single or bidirectional bending.

32 citations

Proceedings ArticleDOI
06 May 2013
TL;DR: The design and testing of a catheter steering model for robotic control of commercial ICE catheters and the proposed algorithms were validated with a robotic test bed using electromagnetic sensor tracking of the catheter tip.
Abstract: Intracardiac echocardiography (ICE) catheters enable high-quality ultrasound imaging within the heart, but their use in guiding procedures is limited due to the difficulty of manually pointing them at structures of interest. This paper presents the design and testing of a catheter steering model for robotic control of commercial ICE catheters. The four actuated degrees of freedom (4-DOF) are two catheter handle knobs to produce bi-directional bending in combination with rotation and translation of the handle. An extra degree of freedom in the system allows the imaging plane (dependent on orientation) to be directed at an object of interest. A closed form solution for forward and inverse kinematics enables control of the catheter tip position and the imaging plane orientation. The proposed algorithms were validated with a robotic test bed using electromagnetic sensor tracking of the catheter tip. The ability to automatically acquire imaging targets in the heart may improve the efficiency and effectiveness of intracardiac catheter interventions by allowing visualization of soft tissue structures that are not visible using standard fluoroscopic guidance. Although the system has been developed and tested for manipulating ICE catheters, the methods described here are applicable to any long thin tendon-driven tool (with single or bi-directional bending) requiring accurate tip position and orientation control.

31 citations


Cited by
More filters
01 Jan 2016
TL;DR: This application applied longitudinal data analysis modeling change and event occurrence will help people to enjoy a good book with a cup of coffee in the afternoon instead of facing with some infectious virus inside their computer.
Abstract: Thank you very much for downloading applied longitudinal data analysis modeling change and event occurrence. As you may know, people have look hundreds times for their favorite novels like this applied longitudinal data analysis modeling change and event occurrence, but end up in malicious downloads. Rather than enjoying a good book with a cup of coffee in the afternoon, instead they are facing with some infectious virus inside their computer.

2,102 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis, and provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging.
Abstract: What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of machine learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.

991 citations

Book
16 Nov 1998

766 citations

01 Jan 2016
TL;DR: Thank you very much for downloading using mpi portable parallel programming with the message passing interface for reading a good book with a cup of coffee in the afternoon, instead they are facing with some malicious bugs inside their laptop.
Abstract: Thank you very much for downloading using mpi portable parallel programming with the message passing interface. As you may know, people have search hundreds times for their chosen novels like this using mpi portable parallel programming with the message passing interface, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they are facing with some malicious bugs inside their laptop.

593 citations

Journal ArticleDOI
TL;DR: This paper indicates how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction, and provides a starting point for people interested in experimenting and contributing to the field of deep learning for medical imaging.
Abstract: What has happened in machine learning lately, and what does it mean for the future of medical image analysis? Machine learning has witnessed a tremendous amount of attention over the last few years. The current boom started around 2009 when so-called deep artificial neural networks began outperforming other established models on a number of important benchmarks. Deep neural networks are now the state-of-the-art machine learning models across a variety of areas, from image analysis to natural language processing, and widely deployed in academia and industry. These developments have a huge potential for medical imaging technology, medical data analysis, medical diagnostics and healthcare in general, slowly being realized. We provide a short overview of recent advances and some associated challenges in machine learning applied to medical image processing and image analysis. As this has become a very broad and fast expanding field we will not survey the entire landscape of applications, but put particular focus on deep learning in MRI. Our aim is threefold: (i) give a brief introduction to deep learning with pointers to core references; (ii) indicate how deep learning has been applied to the entire MRI processing chain, from acquisition to image retrieval, from segmentation to disease prediction; (iii) provide a starting point for people interested in experimenting and perhaps contributing to the field of deep learning for medical imaging by pointing out good educational resources, state-of-the-art open-source code, and interesting sources of data and problems related medical imaging.

590 citations