scispace - formally typeset
Search or ask a question
Author

Laura Lee Colgin

Bio: Laura Lee Colgin is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Hippocampal formation & Hippocampus. The author has an hindex of 31, co-authored 63 publications receiving 6187 citations. Previous affiliations of Laura Lee Colgin include University of California, Irvine & Norwegian University of Science and Technology.


Papers
More filters
Journal ArticleDOI
19 Nov 2009-Nature
TL;DR: The results point to routeing of information as a possible function of gamma frequency variations in the brain and provide a mechanism for temporal segregation of potentially interfering information from different sources.
Abstract: Gamma oscillations are thought to transiently link distributed cell assemblies that are processing related information, a function that is probably important for network processes such as perception, attentional selection and memory. This 'binding' mechanism requires that spatially distributed cells fire together with millisecond range precision; however, it is not clear how such coordinated timing is achieved given that the frequency of gamma oscillations varies substantially across space and time, from approximately 25 to almost 150 Hz. Here we show that gamma oscillations in the CA1 area of the hippocampus split into distinct fast and slow frequency components that differentially couple CA1 to inputs from the medial entorhinal cortex, an area that provides information about the animal's current position, and CA3, a hippocampal subfield essential for storage of such information. Fast gamma oscillations in CA1 were synchronized with fast gamma in medial entorhinal cortex, and slow gamma oscillations in CA1 were coherent with slow gamma in CA3. Significant proportions of cells in medial entorhinal cortex and CA3 were phase-locked to fast and slow CA1 gamma waves, respectively. The two types of gamma occurred at different phases of the CA1 theta rhythm and mostly on different theta cycles. These results point to routeing of information as a possible function of gamma frequency variations in the brain and provide a mechanism for temporal segregation of potentially interfering information from different sources.

1,291 citations

Journal ArticleDOI
TL;DR: Findings from the human neocortex show that the power of fast gamma oscillations is modulated by the phase of slower theta oscillations, which reflects a specific interplay between large ensembles of neurons, likely to have profound implications for neuronal processing.

892 citations

Journal ArticleDOI
TL;DR: The current understanding of the origins and the mnemonic functions of hippocampal theta, sharp wave–ripples and gamma rhythms is discussed on the basis of findings from rodent studies and an updated synthesis of their roles and interactions within the hippocampal network is presented.
Abstract: The hippocampal local field potential (LFP) shows three major types of rhythms: theta, sharp wave-ripples and gamma. These rhythms are defined by their frequencies, they have behavioural correlates in several species including rats and humans, and they have been proposed to carry out distinct functions in hippocampal memory processing. However, recent findings have challenged traditional views on these behavioural functions. In this Review, I discuss our current understanding of the origins and the mnemonic functions of hippocampal theta, sharp wave-ripples and gamma rhythms on the basis of findings from rodent studies. In addition, I present an updated synthesis of their roles and interactions within the hippocampal network.

490 citations

Journal ArticleDOI
TL;DR: Arguments supporting the hypothesis that theta rhythms emerge owing to intrinsic cellular properties yet can be entrained by several theta oscillators throughout the brain are presented, and recent work suggesting that one function of theta is to package related information within individual theta cycles for more efficient spatial memory processing is discussed.
Abstract: The theta rhythm is one of the largest and most sinusoidal activity patterns in the brain. Here I survey progress in the field of theta rhythms research. I present arguments supporting the hypothesis that theta rhythms emerge owing to intrinsic cellular properties yet can be entrained by several theta oscillators throughout the brain. I review behavioral correlates of theta rhythms and consider how these correlates inform our understanding of theta rhythms' functions. I discuss recent work suggesting that one function of theta is to package related information within individual theta cycles for more efficient spatial memory processing. Studies examining the role of theta phase precession in spatial memory, particularly sequence retrieval, are also summarized. Additionally, I discuss how interregional coupling of theta rhythms facilitates communication across brain regions. Finally, I conclude by summarizing how theta rhythms may support cognitive operations in the brain, including learning.

406 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a period of early-life “psychological” stress causes late-onset, selective deterioration of both complex behavior and synaptic plasticity in middle-aged, but not young adult, rats exposed to fragmented maternal care during the early postnatal period.
Abstract: Progressive cognitive deficits that emerge with aging are a result of complex interactions of genetic and environmental factors. Whereas much has been learned about the genetic underpinnings of these disorders, the nature of “acquired” contributing factors, and the mechanisms by which they promote progressive learning and memory dysfunction, remain largely unknown. Here, we demonstrate that a period of early-life “psychological” stress causes late-onset, selective deterioration of both complex behavior and synaptic plasticity: two forms of memory involving the hippocampus, were severely but selectively impaired in middle-aged, but not young adult, rats exposed to fragmented maternal care during the early postnatal period. At the cellular level, disturbances to hippocampal long-term potentiation paralleled the behavioral changes and were accompanied by dendritic atrophy and mossy fiber expansion. These findings constitute the first evidence that a short period of stress early in life can lead to delayed, progressive impairments of synaptic and behavioral measures of hippocampal function, with potential implications to the basis of age-related cognitive disorders in humans.

405 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: As an adjunct to pharmaceutical therapy, social and behavioral interventions such as regular physical activity and social support reduce the chronic stress burden and benefit brain and body health and resilience.
Abstract: The brain is the key organ of the response to stress because it determines what is threatening and, therefore, potentially stressful, as well as the physiological and behavioral responses which can be either adaptive or damaging. Stress involves two-way communication between the brain and the cardiovascular, immune, and other systems via neural and endocrine mechanisms. Beyond the "flight-or-fight" response to acute stress, there are events in daily life that produce a type of chronic stress and lead over time to wear and tear on the body ("allostatic load"). Yet, hormones associated with stress protect the body in the short-run and promote adaptation ("allostasis"). The brain is a target of stress, and the hippocampus was the first brain region, besides the hypothalamus, to be recognized as a target of glucocorticoids. Stress and stress hormones produce both adaptive and maladaptive effects on this brain region throughout the life course. Early life events influence life-long patterns of emotionality and stress responsiveness and alter the rate of brain and body aging. The hippocampus, amygdala, and prefrontal cortex undergo stress-induced structural remodeling, which alters behavioral and physiological responses. As an adjunct to pharmaceutical therapy, social and behavioral interventions such as regular physical activity and social support reduce the chronic stress burden and benefit brain and body health and resilience.

3,062 citations

01 Jan 2010
TL;DR: In this paper, the authors describe a scenario where a group of people are attempting to find a solution to the problem of "finding the needle in a haystack" in the environment.
Abstract: 中枢神経系疾患の治療は正常細胞(ニューロン)の機能維持を目的とするが,脳血管障害のように機能障害の原因が細胞の死滅に基づくことは多い.一方,脳腫瘍の治療においては薬物療法や放射線療法といった腫瘍細胞の死滅を目標とするものが大きな位置を占める.いずれの場合にも,細胞死の機序を理解することは各種病態や治療法の理解のうえで重要である.現在のところ最も研究の進んでいる細胞死の型はアポトーシスである.そのなかで重要な位置を占めるミトコンドリアにおける反応および抗アポトーシス因子について概要を紹介する.

2,716 citations

Journal ArticleDOI
04 Jun 2009-Nature
TL;DR: The timing of a sensory input relative to a gamma cycle determined the amplitude and precision of evoked responses and provided the first causal evidence that distinct network activity states can be induced in vivo by cell-type-specific activation.
Abstract: Corticalgammaoscillations(20280Hz)predictincreasesinfocusedattention,andfailureingammaregulationisahallmark of neurological and psychiatric disease. Current theory predicts that gamma oscillations are generated by synchronous activity of fast-spiking inhibitory interneurons, with the resulting rhythmic inhibition producing neural ensemble synchrony by generating a narrow window for effective excitation. We causally tested these hypotheses in barrel cortex in vivo by targeting optogenetic manipulation selectively to fast-spiking interneurons. Here we show that light-driven activation of fast-spiking interneurons atvariedfrequencies (82200Hz) selectivelyamplifies gamma oscillations. Incontrast, pyramidal neuron activation amplifies only lower frequency oscillations, a cell-type-specific double dissociation. We found that the timing of a sensory input relative to a gamma cycle determined the amplitude and precision of evoked responses. Our data directly support the fast-spiking-gamma hypothesis and provide the first causal evidence that distinct network activity states can be induced in vivo by cell-type-specific activation.

2,453 citations

Journal ArticleDOI
TL;DR: It is proposed that information is gated by inhibiting task-irrelevant regions, thus routing information to task-relevant regions and the empirical support for this framework is discussed.
Abstract: In order to understand the working brain as a network, it is essential to identify the mechanisms by which information is gated between regions. We here propose that information is gated by inhibiting task-irrelevant regions, thus routing information to task-relevant regions. The functional inhibition is reflected in oscillatory activity in the alpha band (8-13 Hz). From a physiological perspective the alpha activity provides pulsed inhibition reducing the processing capabilities of a given area. Active processing in the engaged areas is reflected by neuronal synchronization in the gamma band (30-100 Hz) accompanied by an alpha band decrease. According to this framework the brain should be studied as a network by investigating cross-frequency interactions between gamma and alpha activity. Specifically the framework predicts that optimal task performance will correlate with alpha activity in task-irrelevant areas. In this review we will discuss the empirical support for this framework. Given that alpha activity is by far the strongest signal recorded by EEG and MEG, we propose that a major part of the electrophysiological activity detected from the working brain reflects gating by inhibition.

2,448 citations