scispace - formally typeset
Search or ask a question
Author

Laura M. Jansen

Bio: Laura M. Jansen is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Magnetorheological fluid & Damper. The author has an hindex of 1, co-authored 1 publications receiving 604 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the performance of a number of recently proposed semi-active control algorithms for use with multiple magnetorheological (MR) dampers is evaluated through a numerical example, and the advantages of each algorithm are discussed.
Abstract: This paper presents the results of a study to evaluate the performance of a number of recently proposed semiactive control algorithms for use with multiple magnetorheological (MR) dampers. Various control algorithms used in recent semiactive control studies are considered including the Lyapunov controller, decentralized bang-bang controller, modulated homogeneous friction algorithm, and a clipped optimal controller. Each algorithm is formulated for use with the MR damper. Additionally, each algorithm uses measurements of the absolute acceleration and device displacements for determining the control action to ensure that the algorithms could be implemented on a physical structure. The performance of the algorithms is compared through a numerical example, and the advantages of each algorithm are discussed. The numerical example considers a six-story structure controlled with MR dampers on the lower two floors. In simulation, an El Centro earthquake is used to excite the system, and the reduction in the drif...

633 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, an overview of the essential features and advantages of magnetorheological (MR) materials and devices is given, followed by the derivation of a quasi-static axisymmetric model of MR dampers, which is then compared with both a simple parallel-plate model and experimental results.

719 citations

Journal ArticleDOI
TL;DR: A review of the past, recent developments and implementations of the Bouc-Wen model which is used extensively in modeling the hysteresis phenomenon in the dynamically excited nonlinear structures can be found in this paper.
Abstract: Structural systems often show nonlinear behavior under severe excitations generated by natural hazards. In that condition, the restoring force becomes highly nonlinear showing significant hysteresis. The hereditary nature of this nonlinear restoring force indicates that the force cannot be described as a function of the instantaneous displacement and velocity. Accordingly, many hysteretic restoring force models were developed to include the time dependent nature using a set of differential equations. This survey contains a review of the past, recent developments and implementations of the Bouc-Wen model which is used extensively in modeling the hysteresis phenomenon in the dynamically excited nonlinear structures.

602 citations

Journal ArticleDOI
TL;DR: In this paper, the characteristics of magnetorheological dampers are summarized according to the measured responses under different conditions and the state-of-the-art parametric dynamic modelling, identification and validation techniques for MR dampers were reviewed.
Abstract: Due to the inherent nonlinear nature of magnetorheological (MR) dampers, one of the challenging aspects for developing and utilizing these devices to achieve high performance is the development of models that can accurately describe their unique characteristics. In this review, the characteristics of MR dampers are summarized according to the measured responses under different conditions. On these bases, the considerations and methods of the parametric dynamic modelling for MR dampers are given and the state-of-the-art parametric dynamic modelling, identification and validation techniques for MR dampers are reviewed. In the past two decades, the models for MR dampers have been focused on how to improve the modelling accuracy. Although the force–displacement behaviour is well represented by most of the proposed dynamic models for MR dampers, no simple parametric models with high accuracy for MR dampers can be found. In addition, the parametric dynamic models for MR dampers with on-line updating ability and the inverse parametric models for MR dampers are scarcely explored. Moreover, whether one dynamic model for MR dampers can portray the force–displacement and force–velocity behaviour is not only determined by the dynamic model itself but also determined by the identification method.

408 citations

Journal ArticleDOI
TL;DR: In this paper, a semi-active H∞ control of vehicle suspension with magneto-rheological (MR) damper is studied, where a polynomial model is adopted to characterize the dynamic response of the MR damper.

315 citations

Book
13 Aug 2007
TL;DR: In this article, the authors present a formal analysis of the BIBO stability of the Bouc-Wen model in the limit case n = 1 2.5.1 The limit case (r) = 0 2.3.1 Numerical simulations 5.2.
Abstract: Preface. List of Figures. List of Tables. 1. Introduction 1.1 Objective and contents of the book 1.2 The Bouc-Wen model: origin and literature review 2. Physical consistency of the Bouc-Wen model 2.1 Introduction 2.2 BIBO stability of the Bouc-Wen model 2.2.1 The model 2.2.2 Problem statement 2.2.3 Classi ~ cation of the BIBO stable Bouc-Wen models 2.2.4 Practical remarks 2.3 Free motion of a hysteretic structural system 2.3.1 Problem statement 2.3.2 Asymptotic trajectories 2.3.3 Practical remarks 2.4 Passivity of the Bouc-Wen model 2.5 Limit cases 2.5.1 The limit case n = 1 2.5.2 The limit case (r) = 1 2.5.3 The limit case (r) = 0 2.5.4 The limit case ~ + - = 0 2.6 Conclusion 3 Forced limit cycle characterization of the Bouc-Wen model 3.1 Introduction 3.2 Problem statement 3.2.1 The class of inputs 3.2.2 Problem statement 3.3 The normalized Bouc-Wen model 3.4 Instrumental functions 3.5 Characterization of the asymptotic behavior of the hysteretic output 3.5.1 Technical Lemmas 3.5.2 Analytic description of the forced limit cycles for the Bouc-Wen model 3.6 Simulation example 3.7 Conclusion 4 Variation of the hysteresis loop with the Bouc-Wen model parameters 4.1 Introduction 4.2 Background results and methodology of the analysis 4.2.1 Background results 4.2.2 Methodology of the analysis 4.3 Maximal value of the hysteretic output 4.3.1 Variation with respect to 4.3.2 Variation with respect to 4.3.3 Variation with respect to n 4.3.4 Summary of the obtained results 4.4 Variation of the zero of the hysteretic output 4.4.1 Variation with respect to 4.4.2 Variation with respect to 4.4.3 Variation with respect to n 4.4.4 Summary of the obtained results 4.5 Variation of the hysteretic output with the Bouc-Wen model parameters 4.5.1 Variation with respect to 4.5.2 Variation with respect to 4.5.3 Variation with respect to n 4.5.4 Summary of the obtained results 4.6 The four regions of the Bouc-Wen model 4.6.1 The linear region Rl 4.6.2 The plastic region Rp 4.6.3 The transition regions Rt and Rs 4.7 Interpretation of the normalized Bouc-Wen model parameters 4.7.1 The parameters and 4.7.2 The parameter 4.7.3 The parameter n 4.8 Conclusion 5 Robust identification of the Bouc-Wen model parameters 5.1 Introduction 5.2 Parameter identi ~ cation for the Bouc-Wen model 5.2.1 Class of inputs 5.2.2 Identi ~ cation methodology 5.2.3 Robustness of the identi ~ cation method 5.2.4 Numerical simulation example 5.3 Modeling and identi ~ cation of a magnetorheological damper 5.3.1 Some insights into the viscous + Bouc-Wen model for shear mode MR dampers 5.3.2 Alternatives to the viscous + Bouc-Wen model for shear mode MR dampers 5.4 Identi ~ cation methodology for the viscous + Dahl model . . 5.4.1 Numerical simulations 5.5 Conclusion 6 Control of a system with a Bouc-Wen hysteresis 6.1 Introduction and problem statement 6.2 Control design and stability analysis 6.3 Numerical simulation 6.4 Conclusion A Mathematical background A.1 Existence and uniqueness of solutions A.2 Concepts of stability A.3 Passivity and absolute stability A.3.1 Passivity in mechanical systems A.3.2 Positive realness A.3.3 Sector functions A.3.4 Absolute stability A.4 Input-output properties References. Index.

299 citations