scispace - formally typeset
Search or ask a question
Author

Laura Patrussi

Bio: Laura Patrussi is an academic researcher from University of Siena. The author has contributed to research in topics: Chronic lymphocytic leukemia & T-cell receptor. The author has an hindex of 20, co-authored 43 publications receiving 1575 citations. Previous affiliations of Laura Patrussi include University of Florence & Laboratory of Molecular Biology.

Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that VacA also interferes with T cell activation by two different mechanisms, one of which involves activation of intracellular signaling through the mitogen-activated protein kinases MKK3/6 and p38 and the Rac-specific nucleotide exchange factor, Vav.
Abstract: Helicobacter pylori toxin, VacA, damages the gastric epithelium by erosion and loosening of tight junctions. Here we report that VacA also interferes with T cell activation by two different mechanisms. Formation of anion-specific channels by VacA prevents calcium influx from the extracellular milieu. The transcription factor NF-AT thus fails to translocate to the nucleus and activate key cytokine genes. A second, channel-independent mechanism involves activation of intracellular signaling through the mitogen-activated protein kinases MKK3/6 and p38 and the Rac-specific nucleotide exchange factor, Vav. As a consequence of aberrant Rac activation, disordered actin polymerization is stimulated. The resulting defects in T cell activation may help H. pylori to prevent an effective immune response leading to chronic colonization of its gastric niche.

313 citations

Journal ArticleDOI
TL;DR: It is reported that simvastatin suppresses T‐cell activation and proliferation as the result of its capacity to inhibit HMG‐CoA reductase, and identifies Ras superfamily GTPases as strategic molecular targets in T‐ cell immunosuppression by statins.
Abstract: Statins are widely used hypocholesterolemic drugs that inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, a rate-limiting enzyme of the mevalonate pathway whose biosynthetic end product is cholesterol. In addition to lowering circulating cholesterol, statins perturb the composition of cell membranes, resulting in disruption of lipid rafts, which function as signaling platforms in immunoreceptor signaling. Furthermore, by inhibiting protein prenylation, a process also dependent on mevalonate, statins block membrane targeting and hence activity of small GTPases, which control multiple pathways triggered by these receptors. T-cell activation is crucially dependent on Ras, Rho and Rab GTPases. Furthermore TCR signaling is orchestrated at lipid rafts, identifying T-cells as potential cellular targets of statins. Here we report that simvastatin suppresses T-cell activation and proliferation as the result of its capacity to inhibit HMG-CoA reductase. T-cell treatment with simvastatin does not affect intracellular cholesterol levels or raft integrity nor, accordingly, the initial tyrosine phosphorylation-dependent cascade. Conversely, inhibition of protein prenylation by simvastatin results in a dramatic impairment in the pathways regulated by small GTPases, including the Ras/MAP kinase pathway, the Rac/stress kinase pathway, and the Rab-dependent pathway of receptor endocytosis. The results identify Ras superfamily GTPases as strategic molecular targets in T-cell immunosuppression by statins.

145 citations

Journal ArticleDOI
TL;DR: The authors showed that p66Shc expression results in increased susceptibility to apoptogenic stimuli, which depends on Ser36 phosphorylation and correlates with an altered balance in apoptosis-regulating gene expression.
Abstract: Of the three Shc isoforms, p66Shc is responsible for fine-tuning p52/p46Shc signaling to Ras and has been implicated in apoptotic responses to oxidative stress. Here we show that human peripheral blood lymphocytes and mouse thymocytes and splenic T cells acquire the capacity to express p66Shc in response to apoptogenic stimulation. Using a panel of T-cell transfectants and p66Shc(-/-) T cells, we show that p66Shc expression results in increased susceptibility to apoptogenic stimuli, which depends on Ser36 phosphorylation and correlates with an altered balance in apoptosis-regulating gene expression. Furthermore, p66Shc blunts mitogenic responses to T-cell receptor engagement, at least in part by transdominant inhibition of p52Shc signaling to Ras/mitogen-activated protein kinases, in an S36-dependent manner. The data highlight a novel interplay between p66Shc and p52Shc in the control of T-cell fate.

128 citations

Journal ArticleDOI
TL;DR: The constitutive association found between Vav and the CD3ζ chain suggests a model whereby the TCR‐associated signaling machinery initiates raft aggregation by promoting F‐actin reorganization, which permits full activation of the tyrosine phosphorylation cascade, further reorganization of the actin cytoskeleton and sustained signaling, leading to cell activation.
Abstract: Following ligand binding the TCR segregates to plasma membrane microdomains, termed lipid rafts, characterized by a highly ordered lipid structure favoring partitioning of glycosyl phosphatidyl inositol-linked costimulatory receptors and acylated signaling molecules. Here we show that the inducible association of the TCR and key signaling proteins with lipid rafts is dependent on the actin cytoskeleton through a mechanism involving raft coalescence. Although lipid rafts are required for full activation of the TCR-dependent tyrosine phosphorylation cascade and sustained signaling, triggering of TCR-proximal events, including Fyn activation and a first wave of Vav phosphorylation, is independent of lipid rafts, while a second wave of raft-dependent Vav phosphorylation occurs after raft coalescence, as also supported by the finding that Vav is phosphorylated in response to lipid raft clustering by GM1 aggregation. The constitutive association found between Vav and the CD3ζ chain suggests a model whereby the TCR-associated signaling machinery initiates raft aggregation by promoting F-actin reorganization, which permits full activation of the tyrosine phosphorylation cascade, further reorganization of the actin cytoskeleton and sustained signaling, leading to cell activation.

102 citations

Journal ArticleDOI
TL;DR: The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis.
Abstract: T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis.

98 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is found that intraflagellar transport 20 mediates the ability of Ror2 signaling to induce the invasiveness of tumors that lack primary cilia, and IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex.
Abstract: Signaling through the Ror2 receptor tyrosine kinase promotes invadopodia formation for tumor invasion. Here, we identify intraflagellar transport 20 (IFT20) as a new target of this signaling in tumors that lack primary cilia, and find that IFT20 mediates the ability of Ror2 signaling to induce the invasiveness of these tumors. We also find that IFT20 regulates the nucleation of Golgi-derived microtubules by affecting the GM130-AKAP450 complex, which promotes Golgi ribbon formation in achieving polarized secretion for cell migration and invasion. Furthermore, IFT20 promotes the efficiency of transport through the Golgi complex. These findings shed new insights into how Ror2 signaling promotes tumor invasiveness, and also advance the understanding of how Golgi structure and transport can be regulated.

13,354 citations

Journal ArticleDOI
TL;DR: This review focuses on the molecular mechanisms through which ROS directly interact with critical signaling molecules to initiate signaling in a broad variety of cellular processes, such as proliferation and survival, ROS homeostasis and antioxidant gene regulation, mitochondrial oxidative stress, apoptosis, and aging.

3,372 citations

Journal ArticleDOI
TL;DR: This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of H. pylori, which represents a key factor in the etiology of various gastrointestinal diseases.
Abstract: Helicobacter pylori is the first formally recognized bacterial carcinogen and is one of the most successful human pathogens, as over half of the world's population is colonized with this gram-negative bacterium. Unless treated, colonization usually persists lifelong. H. pylori infection represents a key factor in the etiology of various gastrointestinal diseases, ranging from chronic active gastritis without clinical symptoms to peptic ulceration, gastric adenocarcinoma, and gastric mucosa-associated lymphoid tissue lymphoma. Disease outcome is the result of the complex interplay between the host and the bacterium. Host immune gene polymorphisms and gastric acid secretion largely determine the bacterium's ability to colonize a specific gastric niche. Bacterial virulence factors such as the cytotoxin-associated gene pathogenicity island-encoded protein CagA and the vacuolating cytotoxin VacA aid in this colonization of the gastric mucosa and subsequently seem to modulate the host's immune system. This review focuses on the microbiological, clinical, immunological, and biochemical aspects of the pathogenesis of H. pylori.

2,246 citations

Journal ArticleDOI
TL;DR: The host immune response is discussed and other host factors that increase the pathogenic potential of this bacterium are examined, including host polymorphisms, alterations to the apical-junctional complex, and the effects of environmental factors.
Abstract: Helicobacter pylori is a gastric pathogen that colonizes approximately 50% of the world's population. Infection with H. pylori causes chronic inflammation and significantly increases the risk of developing duodenal and gastric ulcer disease and gastric cancer. Infection with H. pylori is the strongest known risk factor for gastric cancer, which is the second leading cause of cancer-related deaths worldwide. Once H. pylori colonizes the gastric environment, it persists for the lifetime of the host, suggesting that the host immune response is ineffective in clearing this bacterium. In this review, we discuss the host immune response and examine other host factors that increase the pathogenic potential of this bacterium, including host polymorphisms, alterations to the apical-junctional complex, and the effects of environmental factors. In addition to host effects and responses, H. pylori strains are genetically diverse. We discuss the main virulence determinants in H. pylori strains and the correlation between these and the diverse clinical outcomes following H. pylori infection. Since H. pylori inhibits the gastric epithelium of half of the world, it is crucial that we continue to gain understanding of host and microbial factors that increase the risk of developing more severe clinical outcomes.

1,145 citations

Journal ArticleDOI
29 Jul 2005-Cell
TL;DR: P66Shc is a redox enzyme that generates mitochondrial ROS (hydrogen peroxide) as signaling molecules for apoptosis and the existence of alternative redox reactions of the mitochondrial electron transfer chain is demonstrated, which evolved to generate proapoptotic ROS in response to specific stress signals.

1,055 citations