scispace - formally typeset
Search or ask a question
Author

Laurence E. Burgess

Other affiliations: Icos, Celgene, Amgen
Bio: Laurence E. Burgess is an academic researcher from University of Texas at Austin. The author has contributed to research in topics: Lactol & Carboxylic acid. The author has an hindex of 16, co-authored 57 publications receiving 904 citations. Previous affiliations of Laurence E. Burgess include Icos & Celgene.


Papers
More filters
Journal ArticleDOI
TL;DR: The discovery of the clinical development candidate MRTX849 as a potent, selective covalent inhibitor of KRASG12C is described.
Abstract: Capping off an era marred by drug development failures and punctuated by waning interest and presumed intractability toward direct targeting of KRAS, new technologies and strategies are aiding in the target's resurgence. As previously reported, the tetrahydropyridopyrimidines were identified as irreversible covalent inhibitors of KRASG12C that bind in the switch-II pocket of KRAS and make a covalent bond to cysteine 12. Using structure-based drug design in conjunction with a focused in vitro absorption, distribution, metabolism and excretion screening approach, analogues were synthesized to increase the potency and reduce metabolic liabilities of this series. The discovery of the clinical development candidate MRTX849 as a potent, selective covalent inhibitor of KRASG12C is described.

233 citations

Patent
18 Aug 2005
TL;DR: Aryl and heteroaryl-substituted urea compounds useful in the treatment of diseases and conditions related to DNA damage or lesions in DNA replication are disclosed in this paper.
Abstract: Aryl- and heteroaryl-substituted urea compounds useful in the treatment of diseases and conditions related to DNA damage or lesions in DNA replication are disclosed. Methods of making the compounds, and their use as therapeutic agents, for example, in treating cancer and other diseases characterized by defects in DNA replication, chromosome segregation, or cell division also are disclosed.

72 citations

Journal ArticleDOI
TL;DR: This communication will describe the SAR and synthesis of a series of substituted tetrahydroquinoxaline CETP inhibitors from early mu lead to advanced enantiomerically pure analogs.

72 citations

Patent
28 Aug 2001
TL;DR: In this article, compounds of Formula (I) that inhibit DNA-dependent protein kinase, compositions comprising the compounds, methods to inhibit the DNA-PK biological activity, and methods to sensitize cells the agents that cause DNA lesions are disclosed.
Abstract: Compounds of Formula (I) that inhibit DNA-dependent protein kinase, compositions comprising the compounds, methods to inhibit the DNA-PK biological activity, methods to sensitize cells the agents that cause DNA lesions, and methods to potentiate cancer treatment are disclosed.

66 citations

Journal ArticleDOI
TL;DR: A hypothesis that tethered symmetrical inhibitors might bridge two adjacent active sites was explored via a rationally designed series of bisbenzamidines, which demonstrated a remarkable distanced-defined structure-activity relationship against human tryptase with one series possessing subnanomolar potencies.
Abstract: Human lung tryptase, a homotetrameric serine protease unique to mast cell secretory granules, has been implicated in the pathogenesis of asthma. A hypothesis that tethered symmetrical inhibitors might bridge two adjacent active sites was explored via a rationally designed series of bisbenzamidines. These compounds demonstrated a remarkable distanced-defined structure–activity relationship against human tryptase with one series possessing subnanomolar potencies. Additional evidence supporting the concept of active-site bridging is also presented.

63 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The effects of the strategic incorporation of fluorine in drug molecules and applications in positron emission tomography are provided, as well as new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds.
Abstract: The role of fluorine in drug design and development is expanding rapidly as we learn more about the unique properties associated with this unusual element and how to deploy it with greater sophistication. The judicious introduction of fluorine into a molecule can productively influence conformation, pKa, intrinsic potency, membrane permeability, metabolic pathways, and pharmacokinetic properties. In addition, 18F has been established as a useful positron emitting isotope for use with in vivo imaging technology that potentially has extensive application in drug discovery and development, often limited only by convenient synthetic accessibility to labeled compounds. The wide ranging applications of fluorine in drug design are providing a strong stimulus for the development of new synthetic methodologies that allow more facile access to a wide range of fluorinated compounds. In this review, we provide an update on the effects of the strategic incorporation of fluorine in drug molecules and applications in po...

2,149 citations

Journal ArticleDOI
TL;DR: It is shown that human thymic stromal lymphopoietin (TSLP) potently activated CD11c+ dendritic cells (DCs) and induced production of the TH2-attracting chemokines TARC (thymus and activation-regulated chemokine) and MDC (macrophage-derivedChemokine; CCL22).
Abstract: Whether epithelial cells play a role in triggering the immune cascade leading to T helper 2 (T(H)2)-type allergic inflammation is not known. We show here that human thymic stromal lymphopoietin (TSLP) potently activated CD11c(+) dendritic cells (DCs) and induced production of the T(H)2-attracting chemokines TARC (thymus and activation-regulated chemokine; also known as CCL17) and MDC (macrophage-derived chemokine; CCL22). TSLP-activated DCs primed naive T(H) cells to produce the proallergic cytokines interleukin 4 (IL-4), IL-5, IL-13 and tumor necrosis factor-alpha, while down-regulating IL-10 and interferon-gamma. TSLP was highly expressed by epithelial cells, especially keratinocytes from patients with atopic dermatitis. TSLP expression was associated with Langerhans cell migration and activation in situ. These findings shed new light on the function of human TSLP and the role played by epithelial cells and DCs in initiating allergic inflammation.

1,980 citations

Journal ArticleDOI
TL;DR: An overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present is provided.
Abstract: Pd-catalyzed cross-coupling reactions that form C–N bonds have become useful methods to synthesize anilines and aniline derivatives, an important class of compounds throughout chemical research. A key factor in the widespread adoption of these methods has been the continued development of reliable and versatile catalysts that function under operationally simple, user-friendly conditions. This review provides an overview of Pd-catalyzed N-arylation reactions found in both basic and applied chemical research from 2008 to the present. Selected examples of C–N cross-coupling reactions between nine classes of nitrogen-based coupling partners and (pseudo)aryl halides are described for the synthesis of heterocycles, medicinally relevant compounds, natural products, organic materials, and catalysts.

1,709 citations

Journal ArticleDOI
19 May 2006-Cell
TL;DR: It is found that p110alpha is the primary insulin-responsive PI3-K in cultured cells, whereas p110beta is dispensable but sets a phenotypic threshold for p110 alpha activity, which illustrates systematic target validation using a matrix of inhibitors that span a protein family.

1,152 citations

Journal ArticleDOI
TL;DR: Here, examples from 25 different protein targets are used to describe chemical strategies that exploit structural knowledge to rapidly develop fragments into high-affinity leads.
Abstract: Fragment-based lead discovery is gaining momentum in both large pharmaceutical companies and biotechnology laboratories as a complementary approach to traditional screening. This is because fragment-based approaches require significantly fewer compounds to be screened and synthesized, and are showing a high success rate in generating chemical series with lead-like properties. Compared with traditional screening hits, the starting fragments have considerably lower molecular mass, and although the binding interactions of these fragments with a target protein are weak, they are structurally understood through X-ray crystallography or NMR, and they exhibit high 'ligand efficiency'. Here, we use examples from 25 different protein targets to describe chemical strategies that exploit this structural knowledge to rapidly develop fragments into high-affinity leads.

743 citations