scispace - formally typeset
Search or ask a question
Author

Laurence Ramos

Bio: Laurence Ramos is an academic researcher from University of Montpellier. The author has contributed to research in topics: Gluten & Vesicle. The author has an hindex of 26, co-authored 86 publications receiving 2989 citations. Previous affiliations of Laurence Ramos include Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
TL;DR: One-dimensional poly(diphenylbutadiyne) nanostructures synthesized by photopolymerization using a soft templating approach have high photocatalytic activity under visible light without the assistance of sacrificial reagents or precious metal co-catalysts.
Abstract: Visible-light-responsive photocatalysts can directly harvest energy from solar light, offering a desirable way to solve energy and environment issues. Here, we show that one-dimensional poly(diphenylbutadiyne) nanostructures synthesized by photopolymerization using a soft templating approach have high photocatalytic activity under visible light without the assistance of sacrificial reagents or precious metal co-catalysts. These polymer nanostructures are very stable even after repeated cycling. Transmission electron microscopy and nanoscale infrared characterizations reveal that the morphology and structure of the polymer nanostructures remain unchanged after many photocatalytic cycles. These stable and cheap polymer nanofibres are easy to process and can be reused without appreciable loss of activity. Our findings may help the development of semiconducting-based polymers for applications in self-cleaning surfaces, hydrogen generation and photovoltaics.

548 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the work of the last few years with an emphasis on experiments in four distinct and yet related areas: the existence of two different glass states (attractive and repulsive), the dynamics of systems very far from equilibrium, the effect of an external perturbation on glassy materials, and dynamical heterogeneity.
Abstract: Measuring, characterizing, and modelling the slow dynamics of glassy soft matter is a great challenge, with an impact that ranges from industrial applications to fundamental issues in modern statistical physics, such as the glass transition and the description of out-of-equilibrium systems. Although our understanding of these phenomena is still far from complete, recent simulations and novel theoretical approaches and experimental methods have shed new light on the dynamics of soft glassy materials. In this paper, we review the work of the last few years, with an emphasis on experiments in four distinct and yet related areas: the existence of two different glass states (attractive and repulsive), the dynamics of systems very far from equilibrium, the effect of an external perturbation on glassy materials, and dynamical heterogeneity.

303 citations

Journal ArticleDOI
TL;DR: It is proposed that the unusual ultraslow dynamics are due to the relaxation of internal stresses, built into the sample at the jamming transition, and simple scaling arguments that support this hypothesis are presented.
Abstract: We use conventional and multispeckle dynamic light scattering to investigate the dynamics of a wide variety of jammed soft materials, including colloidal gels, concentrated emulsions, and concentrated surfactant phases. For all systems, the dynamic structure factor f(q,t) exhibits a two-step decay. The initial decay is due to the thermally activated diffusive motion of the scatterers, as indicated by the q−2 dependence of the characteristic relaxation time, where q is the scattering vector. However, due to the constrained motion of the scatterers in jammed systems, the dynamics are arrested and the initial decay terminates in a plateau. Surprisingly, we find that a final, ultraslow decay leads to the complete relaxation of f(q,t), indicative of rearrangements on length scales as large as several microns or tens of microns. Remarkably, for all systems the same very peculiar form is found for the final relaxation of the dynamic structure factor: f(q,t) ∼ exp[−(t/τs)p], with p ≈ 1.5 and τs ∼ q−1, thus suggesting the generality of this behavior. Additionally, for all samples the final relaxation slows down with age, although the aging behavior is found to be sample dependent. We propose that the unusual ultraslow dynamics are due to the relaxation of internal stresses, built into the sample at the jamming transition, and present simple scaling arguments that support this hypothesis.

253 citations

Journal ArticleDOI
TL;DR: Bimetallic Pd−Au nanostructures were synthesized in the soft templates provided by surfactant hexagonal mesophases as discussed by the authors, which are constituted by a core rich in gold and a Pd porous shell.
Abstract: Bimetallic Pd−Au nanostructures were synthesized in the soft templates provided by surfactant hexagonal mesophases. The nanostructures are constituted by a core rich in gold and a Pd porous shell. The electrocatalytic activity of these nanostructures for ethanol oxidation in basic medium was compared with that of alloyed Pd−Au nanoparticles synthesized in solution. The Pd−Au alloy is active toward the oxidation of ethanol in an alkaline medium but is not durable in realizing this process. The Pdshell−Aucore nanostructures synthesized in mesophases are promising for application in direct ethanol fuel cells as they exhibit a very good electrocatalytic activity and a high stability.

195 citations

Journal ArticleDOI
16 Jul 1999-Science
TL;DR: A positively charged, mixed bilayer vesicle in the presence of negatively charged surfaces (for example, colloidal particles) can spontaneously partition into an adhesion zone of definite area and another zone that repels additional negative objects.
Abstract: A positively charged, mixed bilayer vesicle in the presence of negatively charged surfaces (for example, colloidal particles) can spontaneously partition into an adhesion zone of definite area and another zone that repels additional negative objects. Although the membrane itself has nonnegative charge in the repulsive zone, negative counterions on the interior of the vesicle spontaneously aggregate there and present a net negative charge to the exterior. Beyond the fundamental result that oppositely charged objects can repel, this mechanism helps to explain recent experiments on surfactant vesicles.

135 citations


Cited by
More filters
Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental mechanism of heterogeneous photocatalysis, advantages, challenges and the design considerations of g-C3N4-based photocatalysts are summarized, including their crystal structural, surface phisicochemical, stability, optical, adsorption, electrochemical, photoelectrochemical and electronic properties.

2,132 citations

Book
01 Jan 2010

1,870 citations

Journal ArticleDOI
TL;DR: In this article, a theoretical perspective is provided on the glass transition in molecular liquids at thermal equilibrium, on the spatially heterogeneous and aging dynamics of disordered materials, and on the rheology of soft glassy materials.
Abstract: A theoretical perspective is provided on the glass transition in molecular liquids at thermal equilibrium, on the spatially heterogeneous and aging dynamics of disordered materials, and on the rheology of soft glassy materials. We start with a broad introduction to the field and emphasize its connections with other subjects and its relevance. The important role played by computer simulations in studying and understanding the dynamics of systems close to the glass transition at the molecular level is given. The recent progress on the subject of the spatially heterogeneous dynamics that characterizes structural relaxation in materials with slow dynamics is reviewed. The main theoretical approaches are presented describing the glass transition in supercooled liquids, focusing on theories that have a microscopic, statistical mechanics basis. We describe both successes and failures and critically assess the current status of each of these approaches. The physics of aging dynamics in disordered materials and the rheology of soft glassy materials are then discussed, and recent theoretical progress is described. For each section, an extensive overview is given of the most recent advances, but we also describe in some detail the important open problems that will occupy a central place in this field in the coming years.

1,774 citations

01 Jan 2016

1,715 citations