scispace - formally typeset
Search or ask a question
Author

Laurence Tiret

Bio: Laurence Tiret is an academic researcher from Pierre-and-Marie-Curie University. The author has contributed to research in topics: Population & Genome-wide association study. The author has an hindex of 79, co-authored 194 publications receiving 25231 citations. Previous affiliations of Laurence Tiret include French Institute of Health and Medical Research & University of Paris.


Papers
More filters
Journal ArticleDOI
Cristen J. Willer1, Ellen M. Schmidt1, Sebanti Sengupta1, Gina M. Peloso2  +316 moreInstitutions (87)
TL;DR: It is found that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index.
Abstract: Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5 × 10(-8), including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index. Our results demonstrate the value of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.

2,585 citations

Journal Article
TL;DR: A combined segregation and linkage analysis provided evidence that the major-gene effect was due to a variant of the ACE gene, in strong linkage disequilibrium with the I/D polymorphism.
Abstract: The hypothesis of a genetic control of plasma angiotensin I-converting enzyme (ACE) level has been suggested both by segregation analysis and by the identification of an insertion/deletion (I/D) polymorphism of the ACE gene, a polymorphism contributing much to the variability of ACE level. To elucidate whether the I/D polymorphism was directly involved in the genetic regulation, plasma ACE activity and genotype for the I/D polymorphism were both measured in a sample of 98 healthy nuclear families. The pattern of familial correlations of ACE level was compatible with a zero correlation between spouses and equal parent-offspring and sib-sib correlations (.24 +/- .04). A segregation analysis indicated that this familial resemblance could be entirely explained by the transmission of a codominant major gene. The I/D polymorphism was associated with marked differences of ACE levels, although these differences were less pronounced than those observed in the segregation analysis. After adjustment for the polymorphism effects, the residual heritability (.280 +/- .096) was significant. Finally, a combined segregation and linkage analysis provided evidence that the major-gene effect was due to a variant of the ACE gene, in strong linkage disequilibrium with the I/D polymorphism. The marker allele I appeared always associated with the major-gene allele s characterized by lower ACE levels. The frequency of allele I was .431 +/- .025, and that of major allele s was .557 +/- .041. The major gene had codominant effects equal to 1.3 residual SDs and accounted for 44% of the total variability of ACE level, as compared with 28% for the I/D polymorphism.(ABSTRACT TRUNCATED AT 250 WORDS)

1,196 citations

Journal ArticleDOI
TL;DR: The use of a sensitive assay for troponin I improves early diagnosis of acute myocardial infarction and risk stratification, regardless of the time of chest-pain onset.
Abstract: BACKGROUND Cardiac troponin testing is central to the diagnosis of acute myocardial infarction. We evaluated a sensitive troponin I assay for the early diagnosis and risk stratification of myocardial infarction. METHODS In a multicenter study, we determined levels of troponin I as assessed by a sensitive assay, troponin T, and traditional myocardial necrosis markers in 1818 consecutive patients with suspected acute myocardial infarction, on admission and 3 hours and 6 hours after admission. RESULTS For samples obtained on admission, the diagnostic accuracy was highest with the sensitive troponin I assay (area under the receiver-operating-characteristic curve [AUC], 0.96), as compared with the troponin T assay (AUC, 0.85) and traditional myocardial necrosis markers. With the use of the sensitive troponin I assay (cutoff value, 0.04 ng per milliliter) on admission, the clinical sensitivity was 90.7%, and the specificity was 90.2%. The diagnostic accuracy was virtually identical in baseline and serial samples, regardless of the time of chest-pain onset. In patients presenting within 3 hours after chest-pain onset, a single sensitive troponin I assay had a negative predictive value of 84.1% and a positive predictive value of 86.7%; these findings predicted a 30% rise in the troponin I level within 6 hours. A troponin I level of more than 0.04 ng per milliliter was independently associated with an increased risk of an adverse outcome at 30 days (hazard ratio, 1.96; 95% confidence interval, 1.27 to 3.05; P=0.003). CONCLUSIONS The use of a sensitive assay for troponin I improves early diagnosis of acute myocardial infarction and risk stratification, regardless of the time of chest-pain onset.

1,056 citations

Journal ArticleDOI
TL;DR: Several lines of evidence support a crucial role of adhesion molecules in the development of atherosclerosis and plaque instability, and results in both fields hold the promise that in future, adhesion molecule might add information for clinical risk prediction and serve as therapeutic targets.

1,031 citations

Journal ArticleDOI
Ron Do1, Cristen J. Willer2, Ellen M. Schmidt2, Sebanti Sengupta2  +263 moreInstitutions (83)
TL;DR: It is suggested that triglyceride-rich lipoproteins causally influence risk for CAD, and the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk.
Abstract: Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 × 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.

817 citations


Cited by
More filters
Journal Article
TL;DR: For the next few weeks the course is going to be exploring a field that’s actually older than classical population genetics, although the approach it’ll be taking to it involves the use of population genetic machinery.
Abstract: So far in this course we have dealt entirely with the evolution of characters that are controlled by simple Mendelian inheritance at a single locus. There are notes on the course website about gametic disequilibrium and how allele frequencies change at two loci simultaneously, but we didn’t discuss them. In every example we’ve considered we’ve imagined that we could understand something about evolution by examining the evolution of a single gene. That’s the domain of classical population genetics. For the next few weeks we’re going to be exploring a field that’s actually older than classical population genetics, although the approach we’ll be taking to it involves the use of population genetic machinery. If you know a little about the history of evolutionary biology, you may know that after the rediscovery of Mendel’s work in 1900 there was a heated debate between the “biometricians” (e.g., Galton and Pearson) and the “Mendelians” (e.g., de Vries, Correns, Bateson, and Morgan). Biometricians asserted that the really important variation in evolution didn’t follow Mendelian rules. Height, weight, skin color, and similar traits seemed to

9,847 citations

Journal ArticleDOI
TL;DR: WRITING GROUP MEMBERS Emelia J. Benjamin, MD, SCM, FAHA Michael J. Reeves, PhD Matthew Ritchey, PT, DPT, OCS, MPH Carlos J. Jiménez, ScD, SM Lori Chaffin Jordan,MD, PhD Suzanne E. Judd, PhD
Abstract: WRITING GROUP MEMBERS Emelia J. Benjamin, MD, SCM, FAHA Michael J. Blaha, MD, MPH Stephanie E. Chiuve, ScD Mary Cushman, MD, MSc, FAHA Sandeep R. Das, MD, MPH, FAHA Rajat Deo, MD, MTR Sarah D. de Ferranti, MD, MPH James Floyd, MD, MS Myriam Fornage, PhD, FAHA Cathleen Gillespie, MS Carmen R. Isasi, MD, PhD, FAHA Monik C. Jiménez, ScD, SM Lori Chaffin Jordan, MD, PhD Suzanne E. Judd, PhD Daniel Lackland, DrPH, FAHA Judith H. Lichtman, PhD, MPH, FAHA Lynda Lisabeth, PhD, MPH, FAHA Simin Liu, MD, ScD, FAHA Chris T. Longenecker, MD Rachel H. Mackey, PhD, MPH, FAHA Kunihiro Matsushita, MD, PhD, FAHA Dariush Mozaffarian, MD, DrPH, FAHA Michael E. Mussolino, PhD, FAHA Khurram Nasir, MD, MPH, FAHA Robert W. Neumar, MD, PhD, FAHA Latha Palaniappan, MD, MS, FAHA Dilip K. Pandey, MBBS, MS, PhD, FAHA Ravi R. Thiagarajan, MD, MPH Mathew J. Reeves, PhD Matthew Ritchey, PT, DPT, OCS, MPH Carlos J. Rodriguez, MD, MPH, FAHA Gregory A. Roth, MD, MPH Wayne D. Rosamond, PhD, FAHA Comilla Sasson, MD, PhD, FAHA Amytis Towfighi, MD Connie W. Tsao, MD, MPH Melanie B. Turner, MPH Salim S. Virani, MD, PhD, FAHA Jenifer H. Voeks, PhD Joshua Z. Willey, MD, MS John T. Wilkins, MD Jason HY. Wu, MSc, PhD, FAHA Heather M. Alger, PhD Sally S. Wong, PhD, RD, CDN, FAHA Paul Muntner, PhD, MHSc On behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee Heart Disease and Stroke Statistics—2017 Update

7,190 citations

Journal ArticleDOI
TL;DR: The current guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation are based on the findings of the ESC Task Force on 12 March 2015.
Abstract: ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation : The Task Force for the management of acute coronary syndromes (ACS) in patients presenting without persistent ST-segment elevation of the European Society of Cardiology (ESC).

6,866 citations

Journal ArticleDOI
TL;DR: Author(s): Writing Group Members; Mozaffarian, Dariush; Benjamin, Emelia J; Go, Alan S; Arnett, Donna K; Blaha, Michael J; Cushman, Mary; Das, Sandeep R; de Ferranti, Sarah; Despres, Jean-Pierre; Fullerton, Heather J; Howard, Virginia J; Huffman, Mark D; Isasi, Carmen R; Jimenez, Monik C; Judd, Suzanne
Abstract: Author(s): Writing Group Members; Mozaffarian, Dariush; Benjamin, Emelia J; Go, Alan S; Arnett, Donna K; Blaha, Michael J; Cushman, Mary; Das, Sandeep R; de Ferranti, Sarah; Despres, Jean-Pierre; Fullerton, Heather J; Howard, Virginia J; Huffman, Mark D; Isasi, Carmen R; Jimenez, Monik C; Judd, Suzanne E; Kissela, Brett M; Lichtman, Judith H; Lisabeth, Lynda D; Liu, Simin; Mackey, Rachel H; Magid, David J; McGuire, Darren K; Mohler, Emile R; Moy, Claudia S; Muntner, Paul; Mussolino, Michael E; Nasir, Khurram; Neumar, Robert W; Nichol, Graham; Palaniappan, Latha; Pandey, Dilip K; Reeves, Mathew J; Rodriguez, Carlos J; Rosamond, Wayne; Sorlie, Paul D; Stein, Joel; Towfighi, Amytis; Turan, Tanya N; Virani, Salim S; Woo, Daniel; Yeh, Robert W; Turner, Melanie B; American Heart Association Statistics Committee; Stroke Statistics Subcommittee

6,181 citations

Journal ArticleDOI
TL;DR: The Statistical Update brings together the most up-to-date statistics on heart disease, stroke, other vascular diseases, and their risk factors and presents them in its Heart Disease and Stroke Statistical Update each year.
Abstract: Appendix I: List of Statistical Fact Sheets. URL: http://www.americanheart.org/presenter.jhtml?identifier=2007 We wish to thank Drs Brian Eigel and Michael Wolz for their valuable comments and contributions. We would like to acknowledge Tim Anderson and Tom Schneider for their editorial contributions and Karen Modesitt for her administrative assistance. Disclosures View this table: View this table: View this table: # Summary {#article-title-2} Each year, the American Heart Association, in conjunction with the Centers for Disease Control and Prevention, the National Institutes of Health, and other government agencies, brings together the most up-to-date statistics on heart disease, stroke, other vascular diseases, and their risk factors and presents them in its Heart Disease and Stroke Statistical Update. The Statistical Update is a valuable resource for researchers, clinicians, healthcare policy makers, media professionals, the lay public, and many others who seek the best national data available on disease …

6,176 citations