scispace - formally typeset
Search or ask a question
Author

Laurent Misson

Bio: Laurent Misson is an academic researcher from Centre national de la recherche scientifique. The author has contributed to research in topics: Soil respiration & Ecosystem respiration. The author has an hindex of 33, co-authored 46 publications receiving 5403 citations. Previous affiliations of Laurent Misson include University of California, Berkeley & SupAgro.

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g., leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics.
Abstract: Terrestrial ecosystems sequester 2.1 Pg of atmospheric carbon annually. A large amount of the terrestrial sink is realized by forests. However, considerable uncertainties remain regarding the fate of this carbon over both short and long timescales. Relevant data to address these uncertainties are being collected at many sites around the world, but syntheses of these data are still sparse. To facilitate future synthesis activities, we have assembled a comprehensive global database for forest ecosystems, which includes carbon budget variables (fluxes and stocks), ecosystem traits (e.g. leaf area index, age), as well as ancillary site information such as management regime, climate, and soil characteristics. This publicly available database can be used to quantify global, regional or biome-specific carbon budgets; to re-examine established relationships; to test emerging hypotheses about ecosystem functioning [e.g. a constant net ecosystem production (NEP) to gross primary production (GPP) ratio]; and as benchmarks for model evaluations. In this paper, we present the first analysis of this database. We discuss the climatic influences on GPP, net primary production (NPP) and NEP and present the CO2 balances for boreal, temperate, and tropical forest biomes based on micrometeorological, ecophysiological, and biometric flux and inventory estimates. Globally, GPP of forests benefited from higher temperatures and precipitation whereas NPP saturated above either a threshold of 1500 mm precipitation or a mean annual temperature of 10 degrees C. The global pattern in NEP was insensitive to climate and is hypothesized to be mainly determined by nonclimatic conditions such as successional stage, management, site history, and site disturbance. In all biomes, closing the CO2 balance required the introduction of substantial biome-specific closure terms. Nonclosure was taken as an indication that respiratory processes, advection, and non-CO2 carbon fluxes are not presently being adequately accounted for.

938 citations

Journal ArticleDOI
TL;DR: In this article, the authors summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America and show that carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most.
Abstract: Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included stand-replacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C m−2y−1) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C m−2y−1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER.

794 citations

Journal ArticleDOI
TL;DR: In this paper, three determinant factors in decomposition patterns of soil organic matter (SOM): temperature, water and carbon (C) inputs were studied. But the authors focused on the role of the above-defined environmental factors on the variability of soil C dynamics.
Abstract: This experiment was designed to study three determinant factors in decomposition patterns of soil organic matter (SOM): temperature, water and carbon (C) inputs. The study combined field measurements with soil lab incubations and ends with a modelling framework based on the results obtained. Soil respiration was periodically measured at an oak savanna woodland and a ponderosa pine plantation. Intact soils cores were collected at both ecosystems, including soils with most labile C burnt off, soils with some labile C gone and soils with fresh inputs of labile C. Two treatments, dry-field condition and field capacity, were applied to an incubation that lasted 111 days. Short-term temperature changes were applied to the soils periodically to quantify temperature responses. This was done to prevent confounding results associated with different pools of C that would result by exposing treatments chronically to different temperature regimes. This paper discusses the role of the above-defined environmental factors on the variability of soil C dynamics. At the seasonal scale, temperature and water were, respectively, the main limiting factors controlling soil CO2 efflux for the ponderosa pine and the oak savanna ecosystems. Spatial and seasonal variations in plant activity (root respiration and exudates production) exerted a strong influence over the seasonal and spatial variation of soil metabolic activity. Mean residence times of bulk SOM were significantly lower at the Nitrogen (N)-rich deciduous savanna than at the N-limited evergreen dominated pine ecosystem. At shorter time scales (daily), SOM decomposition was controlled primarily by temperature during wet periods and by the combined effect of water and temperature during dry periods. Secondary control was provided by the presence/absence of plant derived C inputs (exudation). Further analyses of SOM decomposition suggest that factors such as changes in the decomposer community, stress-induced changes in the metabolic activity of decomposers or SOM stabilization patterns remain unresolved, but should also be considered in future SOM decomposition studies. Observations and confounding factors associated with SOM decomposition patterns and its temperature sensitivity are summarized in the modeling framework.

476 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined direct relationships between the enhanced vegetation index (EVI) and gross primary productivity (GPP) measured at nine eddy covariance flux tower sites across North America.
Abstract: [1] Carbon flux models based on light use efficiency (LUE), such as the MOD17 algorithm, have proved difficult to parameterize because of uncertainties in the LUE term, which is usually estimated from meteorological variables available only at large spatial scales. In search of simpler models based entirely on remote-sensing data, we examined direct relationships between the enhanced vegetation index (EVI) and gross primary productivity (GPP) measured at nine eddy covariance flux tower sites across North America. When data from the winter period of inactive photosynthesis were excluded, the overall relationship between EVI and tower GPP was better than that between MOD17 GPP and tower GPP. However, the EVI/GPP relationships vary between sites. Correlations between EVI and GPP were generally greater for deciduous than for evergreen sites. However, this correlation declined substantially only for sites with the smallest seasonal variation in EVI, suggesting that this relationship can be used for all but the most evergreen sites. Within sites dominated by either evergreen or deciduous species, seasonal variation in EVI was best explained by the severity of summer drought. Our results demonstrate that EVI alone can provide estimates of GPP that are as good as, if not better than, current versions of the MOD17 algorithm for many sites during the active period of photosynthesis. Preliminary data suggest that inclusion of other remote-sensing products in addition to EVI, such as the MODIS land surface temperature (LST), may result in more robust models of carbon balance based entirely on remote-sensing data.

316 citations


Cited by
More filters
Journal ArticleDOI
16 May 2008-Science
TL;DR: Optimizing the need for a key human resource while minimizing its negative consequences requires an integrated interdisciplinary approach and the development of strategies to decrease nitrogen-containing waste.
Abstract: Humans continue to transform the global nitrogen cycle at a record pace, reflecting an increased combustion of fossil fuels, growing demand for nitrogen in agriculture and industry, and pervasive inefficiencies in its use. Much anthropogenic nitrogen is lost to air, water, and land to cause a cascade of environmental and human health problems. Simultaneously, food production in some parts of the world is nitrogen-deficient, highlighting inequities in the distribution of nitrogen-containing fertilizers. Optimizing the need for a key human resource while minimizing its negative consequences requires an integrated interdisciplinary approach and the development of strategies to decrease nitrogen-containing waste.

5,249 citations

Journal ArticleDOI
13 Jun 2008-Science
TL;DR: Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.
Abstract: The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.

4,541 citations

Journal ArticleDOI
13 Aug 2010-Science
TL;DR: Estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate–carbon cycle process models.
Abstract: Terrestrial gross primary production (GPP) is the largest global CO(2) flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 +/- 8 petagrams of carbon per year (Pg C year(-1)) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation. State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large between-model variation of GPP's latitudinal patterns and show higher spatial correlations between GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate-carbon cycle process models.

2,081 citations

Journal ArticleDOI
TL;DR: In this paper, the authors use a spatially explicit modeling tool, integrated valuation of ecosystem services and tradeoffs (InVEST), to predict changes in ecosystem services, biodiversity conservation, and commodity production levels.
Abstract: Nature provides a wide range of benefits to people. There is increasing consensus about the importance of incorporating these “ecosystem services” into resource management decisions, but quantifying the levels and values of these services has proven difficult. We use a spatially explicit modeling tool, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), to predict changes in ecosystem services, biodiversity conservation, and commodity production levels. We apply InVEST to stakeholder-defined scenarios of land-use/land-cover change in the Willamette Basin, Oregon. We found that scenarios that received high scores for a variety of ecosystem services also had high scores for biodiversity, suggesting there is little tradeoff between biodiversity conservation and ecosystem services. Scenarios involving more development had higher commodity production values, but lower levels of biodiversity conservation and ecosystem services. However, including payments for carbon sequestration alleviates this tradeoff. Quantifying ecosystem services in a spatially explicit manner, and analyzing tradeoffs between them, can help to make natural resource decisions more effective, efficient, and defensible.

2,056 citations

Journal ArticleDOI
TL;DR: In this article, an improved version of the global evapotranspiration (ET) algorithm based on MODIS and global meteorology data has been proposed, which simplifies the calculation of vegetation cover fraction, calculating ET as the sum of daytime and nighttime components, adding soil heat flux calculation, improving estimates of stomatal conductance, aerodynamic resistance and boundary layer resistance, separating dry canopy surface from the wet and dividing soil surface into saturated wet surface and moist surface.

2,052 citations