scispace - formally typeset
Search or ask a question
Author

Laurie Hendren

Bio: Laurie Hendren is an academic researcher from McGill University. The author has contributed to research in topics: Compiler & Pointer (computer programming). The author has an hindex of 49, co-authored 177 publications receiving 10680 citations. Previous affiliations of Laurie Hendren include University of California, Irvine & Cornell University.


Papers
More filters
Proceedings ArticleDOI
01 Nov 2010
TL;DR: Soot, a framework for optimizing Java* bytecode, is implemented in Java and supports three intermediate representations for representing Java bytecode: Baf, a streamlined representation of bytecode which is simple to manipulate; Jimple, a typed 3-address intermediate representation suitable for optimization; and Grimp, an aggregated version of Jimple suitable for decompilation.
Abstract: This paper presents Soot, a framework for optimizing Java* bytecode. The framework is implemented in Java and supports three intermediate representations for representing Java bytecode: Baf, a streamlined representation of bytecode which is simple to manipulate; Jimple, a typed 3-address intermediate representation suitable for optimization; and Grimp, an aggregated version of Jimple suitable for decompilation. We describe the motivation for each representation, and the salient points in translating from one representation to another. In order to demonstrate the usefulness of the framework, we have implemented intraprocedural and whole program optimizations. To show that whole program bytecode optimization can give performance improvements, we provide experimental results for 12 large benchmarks, including 8 SPECjvm98 benchmarks running on JDK 1.2 for GNU/Linuxtm. These results show up to 8% improvement when the optimized bytecode is run using the interpreter and up to 21% when run using the JIT compiler.

1,160 citations

Proceedings ArticleDOI
01 Jun 1994
TL;DR: This paper reports on the design, implementation, and empirical results of a new method for dealing with the aliasing problem in C based on approximating the points-to relationships between accessible stack locations that allows the smooth integration for handling general function pointers in C.
Abstract: This paper reports on the design, implementation, and empirical results of a new method for dealing with the aliasing problem in C. The method is based on approximating the points-to relationships between accessible stack locations, and can be used to generate alias pairs, or used directly for other analyses and transformations.Our method provides context-sensitive interprocedural information based on analysis over invocation graphs that capture all calling contexts including recursive and mutually-recursive calling contexts. Furthermore, the method allows the smooth integration for handling general function pointers in C.We illustrate the effectiveness of the method with empirical results from an implementation in the McCAT optimizing/parallelizing C compiler.

608 citations

Proceedings Article
01 Jan 1999

598 citations

Proceedings ArticleDOI
12 Oct 2005
TL;DR: A new history-based language feature called tracematches is presented that enables the programmer to trigger the execution of extra code by specifying a regular pattern of events in a computation trace by exploiting the introduction of free variables in the matching patterns.
Abstract: An aspect observes the execution of a base program; when certain actions occur, the aspect runs some extra code of its own. In the AspectJ language, the observations that an aspect can make are confined to the current action: it is not possible to directly observe the history of a computation.Recently, there have been several interesting proposals for new history-based language features, most notably by Douence et al. and by Walker and Viggers. In this paper, we present a new history-based language feature called tracematches that enables the programmer to trigger the execution of extra code by specifying a regular pattern of events in a computation trace. We have fully designed and implemented tracematches as a seamless extension of AspectJ.A key innovation in our tracematch approach is the introduction of free variables in the matching patterns. This enhancement enables a whole new class of applications in which events can be matched not only by the event kind, but also by the values associated with the free variables. We provide several examples of applications enabled by this feature.After introducing and motivating the idea of tracematches via examples, we present a detailed semantics of our language design, and we derive an implementation from that semantics. The implementation has been realised as an extension of the abc compiler for AspectJ.

456 citations

Book ChapterDOI
07 Apr 2003
TL;DR: SPARK is introduced, a flexible framework for experimenting with points-to analyses for Java that supports equality- and subset-based analyses, variations in field sensitivity, respect for declared types, variationsIn call graph construction, off-line simplification, and several solving algorithms.
Abstract: Most points-to analysis research has been done on different systems by different groups, making it difficult to compare results, and to understand interactions between individual factors each group studied. Furthermore, points-to analysis for Java has been studied much less thoroughly than for C, and the tradeoffs appear very different. We introduce SPARK, a flexible framework for experimenting with points-to analyses for Java. SPARK supports equality- and subset-based analyses, variations in field sensitivity, respect for declared types, variations in call graph construction, off-line simplification, and several solving algorithms. SPARK is composed of building blocks on which new analyses can be based. We demonstrate SPARK in a substantial study of factors affecting precision and efficiency of subset-based points-to analyses, including interactions between these factors. Our results show that SPARK is not only flexible and modular, but also offers superior time/space performance when compared to other points-to analysis implementations.

434 citations


Cited by
More filters
Journal Article
TL;DR: AspectJ as mentioned in this paper is a simple and practical aspect-oriented extension to Java with just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns.
Abstract: Aspect] is a simple and practical aspect-oriented extension to Java With just a few new constructs, AspectJ provides support for modular implementation of a range of crosscutting concerns. In AspectJ's dynamic join point model, join points are well-defined points in the execution of the program; pointcuts are collections of join points; advice are special method-like constructs that can be attached to pointcuts; and aspects are modular units of crosscutting implementation, comprising pointcuts, advice, and ordinary Java member declarations. AspectJ code is compiled into standard Java bytecode. Simple extensions to existing Java development environments make it possible to browse the crosscutting structure of aspects in the same kind of way as one browses the inheritance structure of classes. Several examples show that AspectJ is powerful, and that programs written using it are easy to understand.

2,947 citations

Book
22 Oct 1999
TL;DR: This book is unique in providing an overview of the four major approaches to program analysis: data flow analysis, constraint-based analysis, abstract interpretation, and type and effect systems.
Abstract: Program analysis utilizes static techniques for computing reliable information about the dynamic behavior of programs. Applications include compilers (for code improvement), software validation (for detecting errors) and transformations between data representation (for solving problems such as Y2K). This book is unique in providing an overview of the four major approaches to program analysis: data flow analysis, constraint-based analysis, abstract interpretation, and type and effect systems. The presentation illustrates the extensive similarities between the approaches, helping readers to choose the best one to utilize.

1,955 citations

Proceedings ArticleDOI
09 Jun 2014
TL;DR: FlowDroid is presented, a novel and highly precise static taint analysis for Android applications that successfully finds leaks in a subset of 500 apps from Google Play and about 1,000 malware apps from the VirusShare project.
Abstract: Today's smartphones are a ubiquitous source of private and confidential data. At the same time, smartphone users are plagued by carelessly programmed apps that leak important data by accident, and by malicious apps that exploit their given privileges to copy such data intentionally. While existing static taint-analysis approaches have the potential of detecting such data leaks ahead of time, all approaches for Android use a number of coarse-grain approximations that can yield high numbers of missed leaks and false alarms. In this work we thus present FlowDroid, a novel and highly precise static taint analysis for Android applications. A precise model of Android's lifecycle allows the analysis to properly handle callbacks invoked by the Android framework, while context, flow, field and object-sensitivity allows the analysis to reduce the number of false alarms. Novel on-demand algorithms help FlowDroid maintain high efficiency and precision at the same time. We also propose DroidBench, an open test suite for evaluating the effectiveness and accuracy of taint-analysis tools specifically for Android apps. As we show through a set of experiments using SecuriBench Micro, DroidBench, and a set of well-known Android test applications, FlowDroid finds a very high fraction of data leaks while keeping the rate of false positives low. On DroidBench, FlowDroid achieves 93% recall and 86% precision, greatly outperforming the commercial tools IBM AppScan Source and Fortify SCA. FlowDroid successfully finds leaks in a subset of 500 apps from Google Play and about 1,000 malware apps from the VirusShare project.

1,730 citations

Journal ArticleDOI
TL;DR: It is shown that on real and synthetic applications, the “work” and “critical-path length” of a Cilk computation can be used to model performance accurately, and it is proved that for the class of “fully strict” (well-structured) programs, the Cilk scheduler achieves space, time, and communication bounds all within a constant factor of optimal.

1,688 citations

Proceedings ArticleDOI
16 Oct 2006
TL;DR: This paper recommends benchmarking selection and evaluation methodologies, and introduces the DaCapo benchmarks, a set of open source, client-side Java benchmarks that improve over SPEC Java in a variety of ways, including more complex code, richer object behaviors, and more demanding memory system requirements.
Abstract: Since benchmarks drive computer science research and industry product development, which ones we use and how we evaluate them are key questions for the community. Despite complex runtime tradeoffs due to dynamic compilation and garbage collection required for Java programs, many evaluations still use methodologies developed for C, C++, and Fortran. SPEC, the dominant purveyor of benchmarks, compounded this problem by institutionalizing these methodologies for their Java benchmark suite. This paper recommends benchmarking selection and evaluation methodologies, and introduces the DaCapo benchmarks, a set of open source, client-side Java benchmarks. We demonstrate that the complex interactions of (1) architecture, (2) compiler, (3) virtual machine, (4) memory management, and (5) application require more extensive evaluation than C, C++, and Fortran which stress (4) much less, and do not require (3). We use and introduce new value, time-series, and statistical metrics for static and dynamic properties such as code complexity, code size, heap composition, and pointer mutations. No benchmark suite is definitive, but these metrics show that DaCapo improves over SPEC Java in a variety of ways, including more complex code, richer object behaviors, and more demanding memory system requirements. This paper takes a step towards improving methodologies for choosing and evaluating benchmarks to foster innovation in system design and implementation for Java and other managed languages.

1,561 citations