scispace - formally typeset
Search or ask a question
Author

Laurie L. Baggio

Bio: Laurie L. Baggio is an academic researcher from Lunenfeld-Tanenbaum Research Institute. The author has contributed to research in topics: Glucose homeostasis & Glucagon-like peptide-1. The author has an hindex of 40, co-authored 61 publications receiving 9770 citations. Previous affiliations of Laurie L. Baggio include Mount Sinai Hospital & Toronto General Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: This review focuses on the mechanisms regulating the synthesis, secretion, biological actions, and therapeutic relevance of the incretin peptides glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1).

3,103 citations

Journal ArticleDOI
TL;DR: Interleukin-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand and suggests that drugs modulating this loop may be useful in type 2 diabetes.
Abstract: Exercise, obesity and type 2 diabetes are associated with elevated plasma concentrations of interleukin-6 (IL-6). Glucagon-like peptide-1 (GLP-1) is a hormone that induces insulin secretion. Here we show that administration of IL-6 or elevated IL-6 concentrations in response to exercise stimulate GLP-1 secretion from intestinal L cells and pancreatic alpha cells, improving insulin secretion and glycemia. IL-6 increased GLP-1 production from alpha cells through increased proglucagon (which is encoded by GCG) and prohormone convertase 1/3 expression. In models of type 2 diabetes, the beneficial effects of IL-6 were maintained, and IL-6 neutralization resulted in further elevation of glycemia and reduced pancreatic GLP-1. Hence, IL-6 mediates crosstalk between insulin-sensitive tissues, intestinal L cells and pancreatic islets to adapt to changes in insulin demand. This previously unidentified endocrine loop implicates IL-6 in the regulation of insulin secretion and suggests that drugs modulating this loop may be useful in type 2 diabetes.

731 citations

Journal ArticleDOI
TL;DR: A critical role for CD26 is revealed in physiological glucose homeostasis, and it is established as a potential target for therapy in type II diabetes.
Abstract: A subset of prolyl oligopeptidases, including dipeptidyl-peptidase IV (DPP IV or CD26, EC 3.4.14.5), specifically cleave off N-terminal dipeptides from substrates having proline or alanine in amino acid position 2. This enzyme activity has been implicated in the regulation of the biological activity of multiple hormones and chemokines, including the insulinotropic peptides glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Targeted inactivation of the CD26 gene yielded healthy mice that have normal blood glucose levels in the fasted state, but reduced glycemic excursion after a glucose challenge. Levels of glucose-stimulated circulating insulin and the intact insulinotropic form of GLP-1 are increased in CD26−/− mice. A pharmacological inhibitor of DPP IV enzymatic activity improved glucose tolerance in wild-type, but not in CD26−/−, mice. This inhibitor also improved glucose tolerance in GLP-1 receptor−/− mice, indicating that CD26 contributes to blood glucose regulation by controlling the activity of GLP-1 as well as additional substrates. These data reveal a critical role for CD26 in physiological glucose homeostasis, and establish it as a potential target for therapy in type II diabetes.

535 citations

Journal ArticleDOI
01 Apr 2009-Diabetes
TL;DR: It is demonstrated that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo.
Abstract: OBJECTIVE—Glucagon-like peptide-1 receptor (GLP-1R) agonists are used to treat type 2 diabetes, and transient GLP-1 administration improved cardiac function in humans after acute myocardial infarction (MI) and percutaneous revascularization. However, the consequences of GLP-1R activation before ischemic myocardial injury remain unclear. RESEARCH DESIGN AND METHODS—We assessed the pathophysiology and outcome of coronary artery occlusion in normal and diabetic mice pretreated with the GLP-1R agonist liraglutide. RESULTS—Male C57BL/6 mice were treated twice daily for 7 days with liraglutide or saline followed by induction of MI. Survival was significantly higher in liraglutide-treated mice. Liraglutide reduced cardiac rupture (12 of 60 versus 46 of 60; P 0.0001) and infarct size (21 2% versus 29 3%, P 0.02) and improved cardiac output (12.4 0.6 versus 9.7 0.6 ml/min; P 0.002). Liraglutide also modulated the expression and activity of cardioprotective genes in the mouse heart, including Akt, GSK3, PPAR-, Nrf-2, and HO-1. The effects of liraglutide on survival were independent of weight loss. Moreover, liraglutide conferred cardioprotection and survival advantages over metformin, despite equivalent glycemic control, in diabetic mice with experimental MI. The cardioprotective effects of liraglutide remained detectable 4 days after cessation of therapy and may be partly direct, because liraglutide increased cyclic AMP formation and reduced the extent of caspase-3 activation in cardiomyocytes in a GLP-1R‐dependent manner in vitro. CONCLUSIONS—These findings demonstrate that GLP-1R activation engages prosurvival pathways in the normal and diabetic mouse heart, leading to improved outcomes and enhanced survival after MI in vivo. Diabetes 58:975‐983, 2009

519 citations

Journal ArticleDOI
TL;DR: It is reported here that centrally and peripherally administered GLP-1R agonists dose-dependently increased blood pressure and heart rate and this suggests that the central GLp-1 system represents a regulator of sympathetic outflow leading to downstream activation of cardiovascular responses in vivo.
Abstract: Glucagon-like peptide-1 (GLP-1) released from the gut functions as an incretin that stimulates insulin secretion. GLP-1 is also a brain neuropeptide that controls feeding and drinking behavior and gastric emptying and elicits neuroendocrine responses including development of conditioned taste aversion. Although GLP-1 receptor (GLP-1R) agonists are under development for the treatment of diabetes, GLP-1 administration may increase blood pressure and heart rate in vivo. We report here that centrally and peripherally administered GLP-1R agonists dose-dependently increased blood pressure and heart rate. GLP-1R activation induced c-fos expression in the adrenal medulla and neurons in autonomic control sites in the rat brain, including medullary catecholamine neurons providing input to sympathetic preganglionic neurons. Furthermore, GLP-1R agonists rapidly activated tyrosine hydroxylase transcription in brainstem catecholamine neurons. These findings suggest that the central GLP-1 system represents a regulator of sympathetic outflow leading to downstream activation of cardiovascular responses in vivo.

486 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Clinical trials with the incretin mimetic exenatide and liraglutide show reductions in fasting and postprandial glucose concentrations, and haemoglobin A1c (HbA1c) associated with weight loss, but long-term clinical studies are needed to determine the benefits of targeting the inc retin axis for the treatment of type 2 diabetes.

3,497 citations

Journal ArticleDOI
TL;DR: This review focuses on the mechanisms regulating the synthesis, secretion, biological actions, and therapeutic relevance of the incretin peptides glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1).

3,103 citations

Journal ArticleDOI
TL;DR: The main actions of GLP-1 are to stimulate insulin secretion and to inhibit glucagon secretion, thereby contributing to limit postprandial glucose excursions and acts as an enterogastrone and part of the "ileal brake" mechanism.
Abstract: Glucagon-like peptide 1 (GLP-1) is a 30-amino acid peptide hormone produced in the intestinal epithelial endocrine L-cells by differential processing of proglucagon, the gene which is expressed in ...

2,657 citations

Journal ArticleDOI
19 Mar 2010-Cell
TL;DR: The endoplasmic reticulum is the major site in the cell for protein folding and trafficking and is central to many cellular functions and is emerging as a potential site for the intersection of inflammation and metabolic disease.

2,411 citations

Journal ArticleDOI
01 Apr 2009-Diabetes
TL;DR: Eight players comprise the ominous octet and dictate that treatment should be based upon reversal of known pathogenic abnormalities and not simply on reducing the A1C, and therapy must be started early to prevent/slow the progressive β-cell failure that already is well established in IGT subjects.
Abstract: Insulin resistance in muscle and liver and β-cell failure represent the core pathophysiologic defects in type 2 diabetes. It now is recognized that the β-cell failure occurs much earlier and is more severe than previously thought. Subjects in the upper tertile of impaired glucose tolerance (IGT) are maximally/near-maximally insulin resistant and have lost over 80% of their β-cell function. In addition to the muscle, liver, and β-cell (triumvirate), the fat cell (accelerated lipolysis), gastrointestinal tract (incretin deficiency/resistance), α-cell (hyperglucagonemia), kidney (increased glucose reabsorption), and brain (insulin resistance) all play important roles in the development of glucose intolerance in type 2 diabetic individuals. Collectively, these eight players comprise the ominous octet and dictate that: 1 ) multiple drugs used in combination will be required to correct the multiple pathophysiological defects, 2 ) treatment should be based upon reversal of known pathogenic abnormalities and not simply on reducing the A1C, and 3 ) therapy must be started early to prevent/slow the progressive β-cell failure that already is well established in IGT subjects. A treatment paradigm shift is recommended in which combination therapy is initiated with diet/exercise, metformin (which improves insulin sensitivity and has antiatherogenic effects), a thiazolidinedione (TZD) (which improves insulin sensitivity, preserves β-cell function, and exerts antiatherogenic effects), and exenatide (which preserves β-cell function and promotes weight loss). Sulfonylureas are not recommended because, after an initial improvement in glycemic control, they are associated with a progressive rise in A1C and progressive loss of β-cell function. The natural history of type 2 diabetes has been well described in multiple populations (1–16) (rev. in (17,18). Individuals destined to develop type 2 diabetes inherit a set of genes from their parents that make their tissues resistant to insulin (1,16,19–24). In liver, the insulin resistance is manifested by …

2,184 citations