scispace - formally typeset
Search or ask a question
Author

Lav Gupta

Bio: Lav Gupta is an academic researcher from Washington University in St. Louis. The author has contributed to research in topics: Cloud computing & Virtual network. The author has an hindex of 11, co-authored 27 publications receiving 1753 citations. Previous affiliations of Lav Gupta include University of Missouri & University of Washington.

Papers
More filters
Journal ArticleDOI
TL;DR: This paper surveys the work done toward all of the outstanding issues, relating to this new class of networks, so as to spur further research in these areas.
Abstract: Unmanned aerial vehicles (UAVs) have enormous potential in the public and civil domains. These are particularly useful in applications, where human lives would otherwise be endangered. Multi-UAV systems can collaboratively complete missions more efficiently and economically as compared to single UAV systems. However, there are many issues to be resolved before effective use of UAVs can be made to provide stable and reliable context-specific networks. Much of the work carried out in the areas of mobile ad hoc networks (MANETs), and vehicular ad hoc networks (VANETs) does not address the unique characteristics of the UAV networks. UAV networks may vary from slow dynamic to dynamic and have intermittent links and fluid topology. While it is believed that ad hoc mesh network would be most suitable for UAV networks yet the architecture of multi-UAV networks has been an understudied area. Software defined networking (SDN) could facilitate flexible deployment and management of new services and help reduce cost, increase security and availability in networks. Routing demands of UAV networks go beyond the needs of MANETS and VANETS. Protocols are required that would adapt to high mobility, dynamic topology, intermittent links, power constraints, and changing link quality. UAVs may fail and the network may get partitioned making delay and disruption tolerance an important design consideration. Limited life of the node and dynamicity of the network lead to the requirement of seamless handovers, where researchers are looking at the work done in the areas of MANETs and VANETs, but the jury is still out. As energy supply on UAVs is limited, protocols in various layers should contribute toward greening of the network. This paper surveys the work done toward all of these outstanding issues, relating to this new class of networks, so as to spur further research in these areas.

1,636 citations

Journal ArticleDOI
TL;DR: This paper runs a cyber-vulnerability assessment, a literature review of the available intrusion detection solutions using ML models, and demonstrates how a ML-based anomaly detection system can perform well in detecting these attacks.
Abstract: It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine learning (ML) and big data analytics are the two powerful leverages for analyzing and securing the Internet of Things (IoT) technology. By extension, these techniques can help improve the security of the IIoT systems as well. In this paper, we first present common IIoT protocols and their associated vulnerabilities. Then, we run a cyber-vulnerability assessment and discuss the utilization of ML in countering these susceptibilities. Following that, a literature review of the available intrusion detection solutions using ML models is presented. Finally, we discuss our case study, which includes details of a real-world testbed that we have built to conduct cyber-attacks and to design an intrusion detection system (IDS). We deploy backdoor, command injection, and Structured Query Language (SQL) injection attacks against the system and demonstrate how a ML-based anomaly detection system can perform well in detecting these attacks. We have evaluated the performance through representative metrics to have a fair point of view on the effectiveness of the methods.

230 citations

Journal ArticleDOI
TL;DR: The authors discuss this technology’s background and propose a framework for network slicing for 5G, and discuss remaining challenges and future research directions.
Abstract: Network slicing for 5G provides Network-as-a-Service (NaaS) for different use cases, allowing network operators to build multiple virtual networks on a shared infrastructure. With network slicing, service providers can deploy their applications and services flexibly and quickly to accommodate diverse services’ specific requirements. As an emerging technology with a number of advantages, network slicing has raised many issues for the industry and academia alike. Here, the authors discuss this technology’s background and propose a framework. They also discuss remaining challenges and future research directions.

220 citations

Journal ArticleDOI
TL;DR: This work sets up the problem of minimizing inter-cloud traffic and response time in a multi-cloud scenario as an ILP optimization problem, along with important constraints such as total deployment costs and service level agreements (SLAs) and considers link delays and computational delays in the model.

197 citations

Posted Content
TL;DR: A literature review of the available intrusion detection solutions using machine learning models is presented in this article, which includes details of a real-world testbed that was built to conduct cyber-attacks and to design an intrusion detection system (IDS).
Abstract: It is critical to secure the Industrial Internet of Things (IIoT) devices because of potentially devastating consequences in case of an attack. Machine learning and big data analytics are the two powerful leverages for analyzing and securing the Internet of Things (IoT) technology. By extension, these techniques can help improve the security of the IIoT systems as well. In this paper, we first present common IIoT protocols and their associated vulnerabilities. Then, we run a cyber-vulnerability assessment and discuss the utilization of machine learning in countering these susceptibilities. Following that, a literature review of the available intrusion detection solutions using machine learning models is presented. Finally, we discuss our case study, which includes details of a real-world testbed that we have built to conduct cyber-attacks and to design an intrusion detection system (IDS). We deploy backdoor, command injection, and Structured Query Language (SQL) injection attacks against the system and demonstrate how a machine learning based anomaly detection system can perform well in detecting these attacks. We have evaluated the performance through representative metrics to have a fair point of view on the effectiveness of the methods.

59 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented, and the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated.
Abstract: The use of flying platforms such as unmanned aerial vehicles (UAVs), popularly known as drones, is rapidly growing. In particular, with their inherent attributes such as mobility, flexibility, and adaptive altitude, UAVs admit several key potential applications in wireless systems. On the one hand, UAVs can be used as aerial base stations to enhance coverage, capacity, reliability, and energy efficiency of wireless networks. On the other hand, UAVs can operate as flying mobile terminals within a cellular network. Such cellular-connected UAVs can enable several applications ranging from real-time video streaming to item delivery. In this paper, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented. Moreover, the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated. In particular, the key UAV challenges such as 3D deployment, performance analysis, channel modeling, and energy efficiency are explored along with representative results. Then, open problems and potential research directions pertaining to UAV communications are introduced. Finally, various analytical frameworks and mathematical tools, such as optimization theory, machine learning, stochastic geometry, transport theory, and game theory are described. The use of such tools for addressing unique UAV problems is also presented. In a nutshell, this tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems.

1,395 citations

Posted Content
TL;DR: This tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems on the basis of 3D deployment, performance analysis, channel modeling, and energy efficiency.
Abstract: The use of flying platforms such as unmanned aerial vehicles (UAVs), popularly known as drones, is rapidly growing. In particular, with their inherent attributes such as mobility, flexibility, and adaptive altitude, UAVs admit several key potential applications in wireless systems. On the one hand, UAVs can be used as aerial base stations to enhance coverage, capacity, reliability, and energy efficiency of wireless networks. On the other hand, UAVs can operate as flying mobile terminals within a cellular network. Such cellular-connected UAVs can enable several applications ranging from real-time video streaming to item delivery. In this paper, a comprehensive tutorial on the potential benefits and applications of UAVs in wireless communications is presented. Moreover, the important challenges and the fundamental tradeoffs in UAV-enabled wireless networks are thoroughly investigated. In particular, the key UAV challenges such as three-dimensional deployment, performance analysis, channel modeling, and energy efficiency are explored along with representative results. Then, open problems and potential research directions pertaining to UAV communications are introduced. Finally, various analytical frameworks and mathematical tools such as optimization theory, machine learning, stochastic geometry, transport theory, and game theory are described. The use of such tools for addressing unique UAV problems is also presented. In a nutshell, this tutorial provides key guidelines on how to analyze, optimize, and design UAV-based wireless communication systems.

1,071 citations

Journal ArticleDOI
TL;DR: This survey reports the characteristics and requirements of UAV networks for envisioned civil applications over the period 2000-2015 from a communications and networking viewpoint and elaborate on general networking related requirements such as connectivity, adaptability, safety, privacy, security, and scalability.
Abstract: The days where swarms of unmanned aerial vehicles (UAVs) will occupy our skies are fast approaching due to the introduction of cost-efficient and reliable small aerial vehicles and the increasing demand for use of such vehicles in a plethora of civil applications. Governments and industry alike have been heavily investing in the development of UAVs. As such it is important to understand the characteristics of networks with UAVs to enable the incorporation of multiple, coordinated aerial vehicles into the air traffic in a reliable and safe manner. To this end, this survey reports the characteristics and requirements of UAV networks for envisioned civil applications over the period 2000–2015 from a communications and networking viewpoint. We survey and quantify quality-of-service requirements, network-relevant mission parameters, data requirements, and the minimum data to be transmitted over the network. Furthermore, we elaborate on general networking related requirements such as connectivity, adaptability, safety, privacy, security, and scalability. We also report experimental results from many projects and investigate the suitability of existing communication technologies for supporting reliable aerial networking.

1,067 citations

Journal ArticleDOI
TL;DR: 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
Abstract: The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.

935 citations

Book
26 Aug 2021
TL;DR: The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains, including real-time monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection.
Abstract: The use of unmanned aerial vehicles (UAVs) is growing rapidly across many civil application domains, including real-time monitoring, providing wireless coverage, remote sensing, search and rescue, delivery of goods, security and surveillance, precision agriculture, and civil infrastructure inspection. Smart UAVs are the next big revolution in the UAV technology promising to provide new opportunities in different applications, especially in civil infrastructure in terms of reduced risks and lower cost. Civil infrastructure is expected to dominate more than $45 Billion market value of UAV usage. In this paper, we present UAV civil applications and their challenges. We also discuss the current research trends and provide future insights for potential UAV uses. Furthermore, we present the key challenges for UAV civil applications, including charging challenges, collision avoidance and swarming challenges, and networking and security-related challenges. Based on our review of the recent literature, we discuss open research challenges and draw high-level insights on how these challenges might be approached.

901 citations