scispace - formally typeset
Search or ask a question
Author

Lawrence A. Chick

Other affiliations: Battelle Memorial Institute
Bio: Lawrence A. Chick is an academic researcher from Pacific Northwest National Laboratory. The author has contributed to research in topics: Solid oxide fuel cell & Ceramic. The author has an hindex of 18, co-authored 29 publications receiving 2325 citations. Previous affiliations of Lawrence A. Chick include Battelle Memorial Institute.

Papers
More filters
Journal ArticleDOI
TL;DR: A new combustion synthesis method, the glycine-nitrate process, has been used to prepare oxide ceramic powders, including substituted chromite and manganite powders of high quality.

992 citations

Journal ArticleDOI
TL;DR: In this paper, a simulation tool for planar solid oxide fuel cells is presented, which combines the versatility of a commercial computational fluid dynamics simulation code with a validated electrochemistry calculation method.

315 citations

Journal ArticleDOI
TL;DR: In this article, the authors find evidence that concentration polarization originates in the immediate vicinity of the reactive sites near the anode/electrolyte interface, at the triple phase boundaries (TPBs) between the Ni catalyst particles, the gas, and the oxygen conducting YSZ ceramic.
Abstract: Concentration polarization is important because it determines the maximum power output of a solid oxide fuel cell (SOFC) at high fuel utilization. Anodic concentration polarization occurs when the demand for reactants exceeds the capacity of the porous ceramic anode to supply them by gas diffusion mechanisms. Many models simulate this behavior by assuming an anomolous high value for the tortuosity (eg, t=17), a measure of the bulk diffusional resistance for a porous ceramic. However, recent experiments at several laboratories, including results reported herein, have provided strong evidence that typical sintered powder ceramics (30-50% porosity) have much lower tortuosities (t=2.5-3), indicating that the bulk diffusional resistance is too small to be responsible for concentration polarization. We find evidence that concentration polarization originates in the immediate vicinity of the reactive sites near the anode/electrolyte interface, at the triple phase boundaries (TPBs) between the Ni catalyst particles, the gas, and the oxygen conducting YSZ ceramic. A model is proposed to describe how concentration polarization is controlled by two localized phenomena: competitive adsorption of reactants in areas adjacent to the reactive TPB sites, followed by relatively slow surface diffusion to the reactive sites. The model parameters (adsorption activation energy and surface diffusion coefficients) were more » determined by fitting to well-characterized SOFC voltage-current performance data, and are in good agreement with data from the literature. Results suggest that future SOFC design improvements should focus on optimization of the reactive area, adsorption, and surface diffusion at the anode/electrolyte interface, rather than on anode thicknesses or bulk porosities. « less

173 citations

Journal ArticleDOI
TL;DR: In this article, a hybrid compressive mica seal was developed that showed a reduction of leak rate by about 4300 times (compared to simple mica seals) at 800°C.

120 citations

Journal ArticleDOI
TL;DR: In this paper, a small-scale solid oxide fuel cell (SOFC) power system operating on methane has been demonstrated, achieving a power output of 1650-2150 W with a maximum net LHV efficiency of 0.566 at 1720 W. Although the single pass fuel utilization is only about 55%, because of the anode gas recirculation the overall fuel utilization was up to 93%.

114 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations

01 Jan 2007

1,932 citations

Journal ArticleDOI
09 May 1997-Science
TL;DR: The surface modification scheme reported in this paper enables rational design of the surface properties of tailored porous materials and may lead to the synthesis of more sophisticated functionalized composites for environmental and industrial applications.
Abstract: Mesoporous silica materials containing functionalized organic monolayers have been synthesized. Solid-state nuclear magnetic resonance suggests that a cross-linked monolayer of mercaptopropylsilane was covalently bound to mesoporous silica and closely packed on the surface. The relative surface coverage of the monolayers can be systematically varied up to 76 percent. These materials are extremely efficient in removing mercury and other heavy metals from both aqueous and nonaqueous waste streams, with distribution coefficients up to 340,000. The stability of these materials and the potential to regenerate and reuse them have also been demonstrated. The surface modification scheme reported here enables rational design of the surface properties of tailored porous materials and may lead to the synthesis of more sophisticated functionalized composites for environmental and industrial applications.

1,523 citations

Journal ArticleDOI
TL;DR: The unique properties and niche applications of the hollow structures in diverse fields, including micro-/nanocontainers and reactors, optical properties and applications, magnetic properties, energy storage, catalysis, biomedical applications, environmental remediation, and sensors are discussed.
Abstract: In this Review, we aim to provide an updated summary of the research related to hollow micro- and nanostructures, covering both their synthesis and their applications. After a brief introduction to the definition and classification of the hollow micro-/nanostructures, we discuss various synthetic strategies that can be grouped into three major categories, including hard templating, soft templating, and self-templating synthesis. For both hard and soft templating strategies, we focus on how different types of templates are generated and then used for creating hollow structures. At the end of each section, the structural and morphological control over the product is discussed. For the self-templating strategy, we survey a number of unconventional synthetic methods, such as surface-protected etching, Ostwald ripening, the Kirkendall effect, and galvanic replacement. We then discuss the unique properties and niche applications of the hollow structures in diverse fields, including micro-/nanocontainers and rea...

1,135 citations

Journal ArticleDOI
TL;DR: Technical Challenges 4754 4.2.1.
Abstract: 3.8.2. Temperature Distribution Measurements 4749 3.8.3. Two-Phase Visualization 4750 3.8.4. Experimental Validation 4751 3.9. Modeling the Catalyst Layer at Pore Level 4751 3.10. Summary and Outlook 4752 4. Direct Methanol Fuel Cells 4753 4.1. Technical Challenges 4754 4.1.1. Methanol Oxidation Kinetics 4754 4.1.2. Methanol Crossover 4755 4.1.3. Water Management 4755 4.1.4. Heat Management 4756 4.2. DMFC Modeling 4756 4.2.1. Needs for Modeling 4756 4.2.2. DMFC Models 4756 4.3. Experimental Diagnostics 4757 4.4. Model Validation 4758 4.5. Summary and Outlook 4760 5. Solid Oxide Fuel Cells 4760 5.1. SOFC Models 4761 5.2. Summary and Outlook 4762 6. Closing Remarks 4763 7. Acknowledgments 4763 8. References 4763

1,132 citations