scispace - formally typeset
Search or ask a question
Author

Lawrence Chun

Bio: Lawrence Chun is an academic researcher from Emerald Group Publishing. The author has contributed to research in topics: Tumor microenvironment & Vemurafenib. The author has an hindex of 12, co-authored 13 publications receiving 794 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Biochemical and cellular analyses revealed that LY3009120 inhibits ARAF, BRAF, and CRAF isoforms with similar affinity, while vemurafenib or dabrafenib have little or modest CRAF activity compared to their BRAF activities.

222 citations

Journal ArticleDOI
TL;DR: Lead "switch-control" inhibitor, DCC-2036, potently inhibits both unphosphorylated and phosphorylated ABL1 by inducing a type II inactive conformation, and retains efficacy against the majority of clinically relevant CML-resistance mutants, including T315I.

184 citations

Journal ArticleDOI
TL;DR: Preliminary clinical data provide proof-of-concept that ripretinib inhibits a wide range of KIT mutants in patients with drug-resistant GISTs and type II kinase inhibitor demonstrated to broadly inhibit activation loop mutations in KIT and PDGFRA, previously thought only achievable with type I inhibitors.

171 citations

Journal ArticleDOI
TL;DR: The antitumor effects of rebastinib enhance the efficacy of microtubule inhibiting chemotherapeutic agents, either eribulin or paclitaxel, by reducing tumor volume, metastasis, and improving overall survival.
Abstract: Tumor-infiltrating myeloid cells promote tumor progression by mediating angiogenesis, tumor cell intravasation and metastasis, which can offset the effects of chemotherapy, radiation, and anti-angiogenic therapy. Here, we show that the kinase switch control inhibitor rebastinib inhibits Tie2, a tyrosine kinase receptor expressed on endothelial cells and pro-tumoral Tie2-expressing macrophages in mouse models of metastatic cancer. Rebastinib reduces tumor growth and metastasis in an orthotopic mouse model of metastatic mammary carcinoma through reduction of Tie2+ myeloid cell infiltration, anti-angiogenic effects, and blockade of tumor cell intravasation mediated by perivascular Tie2Hi/Vegf-AHi macrophages in the tumor microenvironment of metastasis (TMEM). The anti-tumor effects of rebastinib enhance the efficacy of microtubule inhibiting chemotherapeutic agents, either eribulin or paclitaxel, by reducing tumor volume, metastasis, and improving overall survival. Rebastinib inhibition of angiopoietin/Tie2 signaling impairs multiple pathways in tumor progression mediated by pro-tumoral Tie2+ macrophages, including TMEM-dependent dissemination and angiopoietin/Tie2-dependent angiogenesis. Rebastinib is a promising therapy for achieving Tie2 inhibition in cancer patients.

93 citations

Journal ArticleDOI
TL;DR: Compound 13, a compound not only active against BRAF V600E but also wild type BRAF and CRAF, was selected on the basis of its superior in vitro and in vivo profile and is currently being evaluated in phase I clinical studies.
Abstract: The RAS-RAF-MEK-MAPK cascade is an essential signaling pathway, with activation typically mediated through cell surface receptors. The kinase inhibitors vemurafenib and dabrafenib, which target oncogenic BRAF V600E, have shown significant clinical efficacy in melanoma patients harboring this mutation. Because of paradoxical pathway activation, both agents were demonstrated to promote growth and metastasis of tumor cells with RAS mutations in preclinical models and are contraindicated for treatment of cancer patients with BRAF WT background, including patients with KRAS or NRAS mutations. In order to eliminate the issues associated with paradoxical MAPK pathway activation and to provide therapeutic benefit to patients with RAS mutant cancers, we sought to identify a compound not only active against BRAF V600E but also wild type BRAF and CRAF. On the basis of its superior in vitro and in vivo profile, compound 13 was selected for further development and is currently being evaluated in phase I clinical studies.

73 citations


Cited by
More filters
01 Jan 2013
TL;DR: In this article, the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs) was described, including several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA.
Abstract: We describe the landscape of somatic genomic alterations based on multidimensional and comprehensive characterization of more than 500 glioblastoma tumors (GBMs). We identify several novel mutated genes as well as complex rearrangements of signature receptors, including EGFR and PDGFRA. TERT promoter mutations are shown to correlate with elevated mRNA expression, supporting a role in telomerase reactivation. Correlative analyses confirm that the survival advantage of the proneural subtype is conferred by the G-CIMP phenotype, and MGMT DNA methylation may be a predictive biomarker for treatment response only in classical subtype GBM. Integrative analysis of genomic and proteomic profiles challenges the notion of therapeutic inhibition of a pathway as an alternative to inhibition of the target itself. These data will facilitate the discovery of therapeutic and diagnostic target candidates, the validation of research and clinical observations and the generation of unanticipated hypotheses that can advance our molecular understanding of this lethal cancer.

2,616 citations

Journal ArticleDOI
TL;DR: How macrophage shape local immune responses in the tumour microenvironment to both suppress and promote immunity to tumours is described and the potential of targeting tumour-associated macrophages to enhance antitumour immune responses is discussed.
Abstract: Macrophages are critical mediators of tissue homeostasis, with tumours distorting this proclivity to stimulate proliferation, angiogenesis and metastasis. This had led to an interest in targeting macrophages in cancer, and preclinical studies have demonstrated efficacy across therapeutic modalities and tumour types. Much of the observed efficacy can be traced to the suppressive capacity of macrophages, driven by microenvironmental cues such as hypoxia and fibrosis. As a result, tumour macrophages display an ability to suppress T cell recruitment and function as well as to regulate other aspects of tumour immunity. With the increasing impact of cancer immunotherapy, macrophage targeting is now being evaluated in this context. Here, we discuss the results of clinical trials and the future of combinatorial immunotherapy. In this Review, DeNardo and Ruffell describe how macrophages shape local immune responses in the tumour microenvironment to both suppress and promote immunity to tumours. The authors also discuss the potential of targeting tumour-associated macrophages to enhance antitumour immune responses.

1,100 citations

Journal ArticleDOI
TL;DR: TRK fusion proteins are pathognomonic in certain rare tumour types and present in a small subset of diverse cancer types, including some common cancers; TRK inhibitors have promising efficacy in the treatment of these cancers, in a histology-agnostic manner.
Abstract: NTRK gene fusions involving either NTRK1, NTRK2 or NTRK3 (encoding the neurotrophin receptors TRKA, TRKB and TRKC, respectively) are oncogenic drivers of various adult and paediatric tumour types. These fusions can be detected in the clinic using a variety of methods, including tumour DNA and RNA sequencing and plasma cell-free DNA profiling. The treatment of patients with NTRK fusion-positive cancers with a first-generation TRK inhibitor, such as larotrectinib or entrectinib, is associated with high response rates (>75%), regardless of tumour histology. First-generation TRK inhibitors are well tolerated by most patients, with toxicity profiles characterized by occasional off-tumour, on-target adverse events (attributable to TRK inhibition in non-malignant tissues). Despite durable disease control in many patients, advanced-stage NTRK fusion-positive cancers eventually become refractory to TRK inhibition; resistance can be mediated by the acquisition of NTRK kinase domain mutations. Fortunately, certain resistance mutations can be overcome by second-generation TRK inhibitors, including LOXO-195 and TPX-0005 that are being explored in clinical trials. In this Review, we discuss the biology of NTRK fusions, strategies to target these drivers in the treatment-naive and acquired-resistance disease settings, and the unique safety profile of TRK inhibitors.

869 citations

Journal ArticleDOI
Ling Zhang1, Xin-Mei Peng1, Guri L.V. Damu1, Rong-Xia Geng1, Cheng-He Zhou1 
TL;DR: This work systematically gives a comprehensive review in current developments of imidazole‐based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti‐inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology.
Abstract: Imidazole ring is an important five-membered aromatic heterocycle widely present in natural products and synthetic molecules. The unique structural feature of imidazole ring with desirable electron-rich characteristic is beneficial for imidazole derivatives to readily bind with a variety of enzymes and receptors in biological systems through diverse weak interactions, thereby exhibiting broad bioactivities. The related research and developments of imidazole-based medicinal chemistry have become a rapidly developing and increasingly active topic. Particularly, numerous imidazole-based compounds as clinical drugs have been extensively used in the clinic to treat various types of diseases with high therapeutic potency, which have shown the enormous development value. This work systematically gives a comprehensive review in current developments of imidazole-based compounds in the whole range of medicinal chemistry as anticancer, antifungal, antibacterial, antitubercular, anti-inflammatory, antineuropathic, antihypertensive, antihistaminic, antiparasitic, antiobesity, antiviral, and other medicinal agents, together with their potential applications in diagnostics and pathology. It is hoped that this review will be helpful for new thoughts in the quest for rational designs of more active and less toxic imidazole-based medicinal drugs, as well as more effective diagnostic agents and pathologic probes.

558 citations

Journal ArticleDOI
TL;DR: The cyclopropyl ring addresses multiple roadblocks that can occur during drug discovery such as enhancing potency, reducing off-target effects, and improving the properties of drugs containing it.
Abstract: Recently, there has been an increasing use of the cyclopropyl ring in drug development to transition drug candidates from the preclinical to clinical stage. Important features of the cyclopropane ring are, the (1) coplanarity of the three carbon atoms, (2) relatively shorter (1.51 A) C–C bonds, (3) enhanced π-character of C–C bonds, and (4) C–H bonds are shorter and stronger than those in alkanes. The present review will focus on the contributions that a cyclopropyl ring makes to the properties of drugs containing it. Consequently, the cyclopropyl ring addresses multiple roadblocks that can occur during drug discovery such as (a) enhancing potency, (b) reducing off-target effects, (c) increasing metabolic stability, (d) increasing brain permeability, (e) decreasing plasma clearance, (f) contributing to an entropically more favorable binding to the receptor, (g) conformational restriction of peptides/peptidomimetics to prevent proteolytic hydrolysis, and (h) altering drug pKa to reduce its P-glycoprotein e...

492 citations