scispace - formally typeset
Search or ask a question
Author

Lawrence S. Melvin

Bio: Lawrence S. Melvin is an academic researcher from Pfizer. The author has contributed to research in topics: Alkyl & Cannabinoid. The author has an hindex of 22, co-authored 76 publications receiving 6447 citations.


Papers
More filters
Journal Article
TL;DR: The criteria for a high affinity, stereoselective, pharmacologically distinct cannabinoid receptor in brain tissue have been fulfilled.
Abstract: The determination and characterization of a cannabinoid receptor from brain are reported. A biologically active bicyclic cannabinoid analgetic CP-55,940 was tritium-labeled to high specific activity. Conditions for binding to rat brain P2 membranes and synaptosomes were established. The pH optimum was between 7 and 8, and specific binding could be eliminated by heating the membranes to 60 degrees. Binding to the P2 membranes was linear within the range of 10 to 50 micrograms of protein/ml. Specific binding (defined as total binding displaced by 1 microM delta 9-tetrahydrocannabinol (delta 9-THC) or 100 nM desacetyllevonantradol) was saturable. The Kd determined from Scatchard analysis was 133 pM, and the Bmax for rat cortical P2 membranes was 1.85 pmol/mg of protein. The Hill coefficient for [3H]CP-55,940 approximated 1, indicating that, under the conditions of assay, a single class of binding sites was determined that did not exhibit cooperativity. The binding was rapid (kon approximately 2.6 x 10(-4) pM-1 min-1) and reversible (Koff approximately 0.016 min-1) and (koff' greater than 0.06 min-1). The two Kd values estimated from the kinetic constants approximately 55 pM and exceeded 200 pM, respectively. The binding of the agonist ligand [3H]CP-55,940 was decreased by the nonhydrolyzable GTP analog guanylylimidodiphosphate. The guanine nucleotide induced a more rapid dissociation of the ligand from the binding site, consistent with an allosteric regulation of the putative receptor by a G protein. The binding was also sensitive to MgCl2 and CaCl2. Binding of [3H]CP-55,940 was displaced by cannabinoid drugs in the following order of potency: CP-55,940 greater than or equal to desacetyllevonantradol greater than 11-OH-delta 9-THC = delta 9-THC greater than cannabinol. Cannabidiol and cannabigerol displaced [3H]CP-55,940 by less than 50% at 1 microM concentrations. The (-)-isomer of CP-55,940 displaced with 50-fold greater potency than the (+)-isomer. This pharmacology is comparable to both the inhibition of adenylate cyclase in vitro and the analgetic activity of these compounds in vivo. The criteria for a high affinity, stereoselective, pharmacologically distinct cannabinoid receptor in brain tissue have been fulfilled.

2,242 citations

Journal ArticleDOI
TL;DR: The potencies of a series of natural and synthetic cannabinoids as competitors of [3H]CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in the in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience.
Abstract: [3H]CP 55,940, a radiolabeled synthetic cannabinoid, which is 10-100 times more potent in vivo than delta 9-tetrahydrocannabinol, was used to characterize and localize a specific cannabinoid receptor in brain sections. The potencies of a series of natural and synthetic cannabinoids as competitors of [3H]CP 55,940 binding correlated closely with their relative potencies in several biological assays, suggesting that the receptor characterized in our in vitro assay is the same receptor that mediates behavioral and pharmacological effects of cannabinoids, including human subjective experience. Autoradiography of cannabinoid receptors in brain sections from several mammalian species, including human, reveals a unique and conserved distribution; binding is most dense in outflow nuclei of the basal ganglia--the substantia nigra pars reticulata and globus pallidus--and in the hippocampus and cerebellum. Generally high densities in forebrain and cerebellum implicate roles for cannabinoids in cognition and movement. Sparse densities in lower brainstem areas controlling cardiovascular and respiratory functions may explain why high doses of delta 9-tetrahydrocannabinol are not lethal.

2,179 citations

Journal Article
TL;DR: High correlations were demonstrated between binding affinity and in vivo potency in both the rat drug discrimination model and for psychotomimetic activity in humans, and the structure-activity relationship indicated the importance of side chain structure to high-affinity binding.
Abstract: Although a receptor exists for cannabinoid drugs, it is uncertain which pharmacological actions this receptor mediates. This structure-activity relationship investigation was initiated to determine which effects might correspond to binding affinity for the cannabinoid receptor, as well as to explore the binding requirements of this site. The ability of nearly 60 cannabinoids to displace [3H]CP-55,940 [(-)-3-[2-hydroxy-4-(1,1-dimethylheptyl) phenyl]-4-[3-hydroxy propyl] cyclohexan-1-ol] was determined before establishing correlations between receptor affinity and in vivo pharmacological potency. Analysis of [3H]CP-55,940 binding indicated a Hill coefficient of 0.97, a Bmax of 499 pM (3.3 pmol/mg of protein) and an apparent Kd of 924 pM. Closer inspection indicated the binding assay exhibited "zone B" characteristics, and use of correction equations indicated a true Kd for CP-55,940 of 675 pM. The structure-activity relationship indicated the importance of side chain structure to high-affinity binding, with the most potent analogs (K1 < 10 nM) possessing either a dimethylheptyl side-chain, a similarly complex branched side chain or a halogen substituent at the 5' position. Comparative analysis of K1 values to in vivo potency in a mouse model indicated a high degree of correlation between parameters for the depression of spontaneous locomotor activity (r = 0.91) and for the production of antinociception (r = 0.90), hypothermia (r = 0.89) and catalepsy (r = 0.85). Similarly high correlations were demonstrated between binding affinity and in vivo potency in both the rat drug discrimination model (r = 0.81) and for psychotomimetic activity in humans (r = 0.88).(ABSTRACT TRUNCATED AT 250 WORDS)

443 citations

Journal ArticleDOI
TL;DR: The actions of the active principle of marihuana, delta 9-tetrahydrocannabinol, are mimicked by synthetic cannabinoid agonists showing high potency and enantio-selectivity in behavioral assays, leading to a better understanding of the effects of cannabinoids in the CNS of humans and experimental animals.

308 citations

Journal Article
TL;DR: It is postulated that the receptor that is associated with the regulation of adenylate cyclase in vitro may be the same receptor as that mediating analgesia in vivo, and a conceptualization of the cannabinoid analgetic receptor is presented.
Abstract: Extensive structure-activity relationship studies have demonstrated that specific requirements within the cannabinoid structure are necessary to produce potent analgesia. A three-point association between the agonist and the receptor mediating analgesia consists of: 1) the C ring hydroxyl, 2) the phenolic A ring hydroxyl, and 3) the A ring alkyl hydrophobic side chain. Potent tricyclic and bicyclic structures were synthesized as "nonclassical" cannabinoid analgetics that conform to this agonist-receptor three-point interaction model. At the cellular level, centrally active cannabinoid drugs inhibit adenylate cyclase activity in a neuroblastoma cell line. The structure-activity relationship profile for inhibition of adenylate cyclase in vitro was consistent with this same three-point association of agonists with the receptor. A correlation exists between the potency of drugs to produce analgesia in vivo and to inhibit adenylate cyclase in vitro. Enantio- and stereoselectivity were exhibited by the nonclassical cannabinoid compounds for both the analgetic response and the ability to inhibit adenylate cyclase. The magnitude of the enantioselective response was equal for both the biochemical and physiological endpoints. Based on the parallels in structure-activity relationships and the enantioselective effects, it is postulated that the receptor that is associated with the regulation of adenylate cyclase in vitro may be the same receptor as that mediating analgesia in vivo. A conceptualization of the cannabinoid analgetic receptor is presented.

245 citations


Cited by
More filters
Journal ArticleDOI
18 Dec 1992-Science
TL;DR: In this article, an arachidonylethanthanolamide (anandamide) was identified in a screen for endogenous ligands for the cannabinoid receptor and its structure was determined by mass spectrometry and nuclear magnetic resonance spectroscopy and confirmed by synthesis.
Abstract: Arachidonylethanolamide, an arachidonic acid derivative in porcine brain, was identified in a screen for endogenous ligands for the cannabinoid receptor. The structure of this compound, which has been named "anandamide," was determined by mass spectrometry and nuclear magnetic resonance spectroscopy and was confirmed by synthesis. Anandamide inhibited the specific binding of a radiolabeled cannabinoid probe to synaptosomal membranes in a manner typical of competitive ligands and produced a concentration-dependent inhibition of the electrically evoked twitch response to the mouse vas deferens, a characteristic effect of psychotropic cannabinoids. These properties suggest that anandamide may function as a natural ligand for the cannabinoid receptor.

5,283 citations

Journal ArticleDOI
09 Aug 1990-Nature
TL;DR: The cloning and expression of a complementary DNA that encodes a G protein-coupled receptor that is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana are suggested.
Abstract: Marijuana and many of its constituent cannabinoids influence the central nervous system (CNS) in a complex and dose-dependent manner. Although CNS depression and analgesia are well documented effects of the cannabinoids, the mechanisms responsible for these and other cannabinoid-induced effects are not so far known. The hydrophobic nature of these substances has suggested that cannabinoids resemble anaesthetic agents in their action, that is, they nonspecifically disrupt cellular membranes. Recent evidence, however, has supported a mechanism involving a G protein-coupled receptor found in brain and neural cell lines, and which inhibits adenylate cyclase activity in a dose-dependent, stereoselective and pertussis toxin-sensitive manner. Also, the receptor is more responsive to psychoactive cannabinoids than to non-psychoactive cannabinoids. Here we report the cloning and expression of a complementary DNA that encodes a G protein-coupled receptor with all of these properties. Its messenger RNA is found in cell lines and regions of the brain that have cannabinoid receptors. These findings suggest that this protein is involved in cannabinoid-induced CNS effects (including alterations in mood and cognition) experienced by users of marijuana.

4,806 citations

Journal ArticleDOI
02 Sep 1993-Nature
TL;DR: The cloning of a receptor for cannabinoids is reported that is not expressed in the brain but rather in macrophages in the marginal zone of spleen, which helps clarify the non-psychoactive effects of cannabinoids.
Abstract: THE major active ingredient of marijuana, Δ9-tetrahydrocannabi-nol (Δ9-THC), has been used as a psychoactive agent for thousands of years. Marijuana, and Δ9-THC, also exert a wide range of other effects including analgesia, anti-inflammation, immunosuppression, anticonvulsion, alleviation of intraocular pressure in glaucoma, and attenuation of vomiting1. The clinical application of cannabinoids has, however, been limited by their psychoactive effects, and this has led to interest in the biochemical bases of their action. Progress stemmed initially from the synthesis of potent derivatives of δ9-THC4,5, and more recently from the cloning of a gene encoding a G-protein-coupled receptor for cannabinoids6. This receptor is expressed in the brain but not in the periphery, except for a low level in testes. It has been proposed that the non-psychoactive effects of cannabinoids are either mediated centrally or through direct interaction with other, non-receptor proteins1,7,8. Here we report the cloning of a receptor for cannabinoids that is not expressed in the brain but rather in macrophages in the marginal zone of spleen.

4,782 citations

Journal ArticleDOI
TL;DR: Upon intravenous administration to mice, 2-Ara-Gl caused the typical tetrad of effects produced by THC: antinociception, immobility, reduction of spontaneous activity, and lowering of the rectal temperature.

2,764 citations

Journal ArticleDOI
TL;DR: The view that addiction is the pathology that results from an allostatic mechanism using the circuits established for natural rewards provides a realistic approach to identifying the neurobiological factors that produce vulnerability to addiction and relapse.

2,678 citations