scispace - formally typeset
Search or ask a question
Author

Lea Ann Medeiros

Bio: Lea Ann Medeiros is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Induced pluripotent stem cell & Phenotype. The author has an hindex of 3, co-authored 3 publications receiving 2660 citations.

Papers
More filters
Journal ArticleDOI
18 May 2006-Nature
TL;DR: It is shown that PcG proteins directly repress a large cohort of developmental regulators in murine ES cells, the expression of which would otherwise promote differentiation, and dynamic repression of developmental pathways by Polycomb complexes may be required for maintaining ES cell pluripotency and plasticity during embryonic development.
Abstract: The mechanisms by which embryonic stem (ES) cells self-renew while maintaining the ability to differentiate into virtually all adult cell types are not well understood. Polycomb group (PcG) proteins are transcriptional repressors that help to maintain cellular identity during metazoan development by epigenetic modification of chromatin structure. PcG proteins have essential roles in early embryonic development and have been implicated in ES cell pluripotency, but few of their target genes are known in mammals. Here we show that PcG proteins directly repress a large cohort of developmental regulators in murine ES cells, the expression of which would otherwise promote differentiation. Using genome-wide location analysis in murine ES cells, we found that the Polycomb repressive complexes PRC1 and PRC2 co-occupied 512 genes, many of which encode transcription factors with important roles in development. All of the co-occupied genes contained modified nucleosomes (trimethylated Lys 27 on histone H3). Consistent with a causal role in gene silencing in ES cells, PcG target genes were de-repressed in cells deficient for the PRC2 component Eed, and were preferentially activated on induction of differentiation. Our results indicate that dynamic repression of developmental pathways by Polycomb complexes may be required for maintaining ES cell pluripotency and plasticity during embryonic development.

2,549 citations

Journal ArticleDOI
TL;DR: It is shown that in surviving mir-290–295-deficient embryos, female but not male fertility is compromised and this impairment in fertility arises from a defect in migrating primordial germ cells and occurs equally in male and female mutant animals.
Abstract: Mir-290 through mir-295 (mir-290–295) is a mammalian-specific microRNA (miRNA) cluster that, in mice, is expressed specifically in early embryos and embryonic germ cells. Here, we show that mir-290–295 plays important roles in embryonic development as indicated by the partially penetrant lethality of mutant embryos. In addition, we show that in surviving mir-290–295-deficient embryos, female but not male fertility is compromised. This impairment in fertility arises from a defect in migrating primordial germ cells and occurs equally in male and female mutant animals. Male mir-290–295−/− mice, due to the extended proliferative lifespan of their germ cells, are able to recover from this initial germ cell loss and are fertile. Female mir-290–295−/− mice are unable to recover and are sterile, due to premature ovarian failure.

145 citations

Journal ArticleDOI
TL;DR: The pro-survival phenotype shown here may be most relevant to stressful gestations, where pro-oxidant metabolic states induce DNA damage, and may mediate chemotherapeutic resistance in a neoplastic context, making it a useful clinical target.
Abstract: MicroRNAs (miRNAs) post-transcriptionally regulate the expression of thousands of distinct mRNAs. While some regulatory interactions help to maintain basal cellular functions, others are likely relevant in more specific settings, such as response to stress. Here we describe such a role for the mir-290-295 cluster, the dominant miRNA cluster in mouse embryonic stem cells (mESCs). Examination of a target list generated from bioinformatic prediction, as well as expression data following miRNA loss, revealed strong enrichment for apoptotic regulators, two of which we validated directly: Caspase 2, the most highly conserved mammalian caspase, and Ei24, a p53 transcriptional target. Consistent with these predictions, mESCs lacking miRNAs were more likely to initiate apoptosis following genotoxic exposure to gamma irradiation or doxorubicin. Knockdown of either candidate partially rescued this pro-apoptotic phenotype, as did transfection of members of the mir290-295 cluster. These findings were recapitulated in a specific mir-290-295 deletion line, confirming that they reflect miRNA functions at physiological levels. In contrast to the basal regulatory roles previously identified, the pro-survival phenotype shown here may be most relevant to stressful gestations, where pro-oxidant metabolic states induce DNA damage. Similarly, this cluster may mediate chemotherapeutic resistance in a neoplastic context, making it a useful clinical target.

99 citations


Cited by
More filters
Journal ArticleDOI
18 May 2007-Cell
TL;DR: High-resolution maps for the genome-wide distribution of 20 histone lysine and arginine methylations as well as histone variant H2A.Z, RNA polymerase II, and the insulator binding protein CTCF across the human genome using the Solexa 1G sequencing technology are generated.

6,488 citations

Journal ArticleDOI
23 Feb 2007-Cell
TL;DR: Recent advances in understanding how epigenetic alterations participate in the earliest stages of neoplasia, including stem/precursor cell contributions, are reviewed and the growing implications of these advances for strategies to control cancer are discussed.

4,269 citations

Journal ArticleDOI
02 Aug 2007-Nature
TL;DR: The application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells is reported and it is shown that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms.
Abstract: We report the application of single-molecule-based sequencing technology for high-throughput profiling of histone modifications in mammalian cells By obtaining over four billion bases of sequence from chromatin immunoprecipitated DNA, we generated genome-wide chromatin-state maps of mouse embryonic stem cells, neural progenitor cells and embryonic fibroblasts We find that lysine 4 and lysine 27 trimethylation effectively discriminates genes that are expressed, poised for expression, or stably repressed, and therefore reflect cell state and lineage potential Lysine 36 trimethylation marks primary coding and non-coding transcripts, facilitating gene annotation Trimethylation of lysine 9 and lysine 20 is detected at satellite, telomeric and active long-terminal repeats, and can spread into proximal unique sequences Lysine 4 and lysine 9 trimethylation marks imprinting control regions Finally, we show that chromatin state can be read in an allele-specific manner by using single nucleotide polymorphisms This study provides a framework for the application of comprehensive chromatin profiling towards characterization of diverse mammalian cell populations

4,166 citations

Journal ArticleDOI
29 Jun 2007-Cell
TL;DR: The transcriptional landscape of the four human HOX loci is characterized at five base pair resolution in 11 anatomic sites and 231 HOX ncRNAs are identified that extend known transcribed regions by more than 30 kilobases, suggesting transcription of ncRNA may demarcate chromosomal domains of gene silencing at a distance.

4,003 citations

Journal ArticleDOI
11 Apr 2013-Cell
TL;DR: In this article, the ESC master transcription factors form unusual enhancer domains at most genes that control the pluripotent state, called super-enhancers, which consist of clusters of enhancers that are densely occupied by the master regulators and Mediator.

2,978 citations