scispace - formally typeset
Search or ask a question
Author

Leah Clissold

Other affiliations: Norwich University
Bio: Leah Clissold is an academic researcher from Norwich Research Park. The author has contributed to research in topics: Genome & Genomics. The author has an hindex of 14, co-authored 15 publications receiving 3591 citations. Previous affiliations of Leah Clissold include Norwich University.
Topics: Genome, Genomics, Polyploid, Population, Gene

Papers
More filters
Journal ArticleDOI
Klaus F. X. Mayer, Jane Rogers, Jaroslav Doležel1, Curtis J. Pozniak2, Kellye Eversole, Catherine Feuillet3, Bikram S. Gill4, Bernd Friebe4, Adam J. Lukaszewski5, Pierre Sourdille6, Takashi R. Endo7, M. Kubaláková1, Jarmila Číhalíková1, Zdeňka Dubská1, Jan Vrána1, Romana Šperková1, Hana Šimková1, Melanie Febrer8, Leah Clissold, Kirsten McLay, Kuldeep Singh9, Parveen Chhuneja9, Nagendra K. Singh10, Jitendra P. Khurana11, Eduard Akhunov4, Frédéric Choulet6, Adriana Alberti, Valérie Barbe, Patrick Wincker, Hiroyuki Kanamori12, Fuminori Kobayashi12, Takeshi Itoh12, Takashi Matsumoto12, Hiroaki Sakai12, Tsuyoshi Tanaka12, Jianzhong Wu12, Yasunari Ogihara13, Hirokazu Handa12, P. Ron Maclachlan2, Andrew G. Sharpe14, Darrin Klassen14, David Edwards, Jacqueline Batley, Odd-Arne Olsen, Simen Rød Sandve15, Sigbjørn Lien15, Burkhard Steuernagel16, Brande B. H. Wulff16, Mario Caccamo, Sarah Ayling, Ricardo H. Ramirez-Gonzalez, Bernardo J. Clavijo, Jonathan M. Wright, Matthias Pfeifer, Manuel Spannagl, Mihaela Martis, Martin Mascher17, Jarrod Chapman18, Jesse Poland4, Uwe Scholz17, Kerrie Barry18, Robbie Waugh19, Daniel S. Rokhsar18, Gary J. Muehlbauer, Nils Stein17, Heidrun Gundlach, Matthias Zytnicki20, Véronique Jamilloux20, Hadi Quesneville20, Thomas Wicker21, Primetta Faccioli, Moreno Colaiacovo, Antonio Michele Stanca, Hikmet Budak22, Luigi Cattivelli, Natasha Glover6, Lise Pingault6, Etienne Paux6, Sapna Sharma, Rudi Appels23, Matthew I. Bellgard23, Brett Chapman23, Thomas Nussbaumer, Kai Christian Bader, Hélène Rimbert, Shichen Wang4, Ron Knox, Andrzej Kilian, Michael Alaux20, Françoise Alfama20, Loïc Couderc20, Nicolas Guilhot6, Claire Viseux20, Mikaël Loaec20, Beat Keller21, Sébastien Praud 
18 Jul 2014-Science
TL;DR: Insight into the genome biology of a polyploid crop provide a springboard for faster gene isolation, rapid genetic marker development, and precise breeding to meet the needs of increasing food demand worldwide.
Abstract: An ordered draft sequence of the 17-gigabase hexaploid bread wheat (Triticum aestivum) genome has been produced by sequencing isolated chromosome arms. We have annotated 124,201 gene loci distributed nearly evenly across the homeologous chromosomes and subgenomes. Comparative gene analysis of wheat subgenomes and extant diploid and tetraploid wheat relatives showed that high sequence similarity and structural conservation are retained, with limited gene loss, after polyploidization. However, across the genomes there was evidence of dynamic gene gain, loss, and duplication since the divergence of the wheat lineages. A high degree of transcriptional autonomy and no global dominance was found for the subgenomes. These insights into the genome biology of a polyploid crop provide a springboard for faster gene isolation, rapid genetic marker development, and precise breeding to meet the needs of increasing food demand worldwide.

1,421 citations

Journal ArticleDOI
27 Apr 2017-Nature
TL;DR: The importance of the barley reference sequence for breeding is demonstrated by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.
Abstract: Cereal grasses of the Triticeae tribe have been the major food source in temperate regions since the dawn of agriculture. Their large genomes are characterized by a high content of repetitive elements and large pericentromeric regions that are virtually devoid of meiotic recombination. Here we present a high-quality reference genome assembly for barley (Hordeum vulgare L.). We use chromosome conformation capture mapping to derive the linear order of sequences across the pericentromeric space and to investigate the spatial organization of chromatin in the nucleus at megabase resolution. The composition of genes and repetitive elements differs between distal and proximal regions. Gene family analyses reveal lineage-specific duplications of genes involved in the transport of nutrients to developing seeds and the mobilization of carbohydrates in grains. We demonstrate the importance of the barley reference sequence for breeding by inspecting the genomic partitioning of sequence variation in modern elite germplasm, highlighting regions vulnerable to genetic erosion.

1,105 citations

Journal ArticleDOI
TL;DR: The protein coding regions of 2,735 mutant lines of tetraploid and hexaploid wheat were sequenced and a public database including more than 10 million mutations was developed, enabling rapid identification of mutations in the different copies of the wheat genes.
Abstract: Comprehensive reverse genetic resources, which have been key to understanding gene function in diploid model organisms, are missing in many polyploid crops. Young polyploid species such as wheat, which was domesticated less than 10,000 y ago, have high levels of sequence identity among subgenomes that mask the effects of recessive alleles. Such redundancy reduces the probability of selection of favorable mutations during natural or human selection, but also allows wheat to tolerate high densities of induced mutations. Here we exploited this property to sequence and catalog more than 10 million mutations in the protein-coding regions of 2,735 mutant lines of tetraploid and hexaploid wheat. We detected, on average, 2,705 and 5,351 mutations per tetraploid and hexaploid line, respectively, which resulted in 35-40 mutations per kb in each population. With these mutation densities, we identified an average of 23-24 missense and truncation alleles per gene, with at least one truncation or deleterious missense mutation in more than 90% of the captured wheat genes per population. This public collection of mutant seed stocks and sequence data enables rapid identification of mutations in the different copies of the wheat genes, which can be combined to uncover previously hidden variation. Polyploidy is a central phenomenon in plant evolution, and many crop species have undergone recent genome duplication events. Therefore, the general strategy and methods developed herein can benefit other polyploid crops.

421 citations

Journal ArticleDOI
TL;DR: Applying associative transcriptomics, which uses transcriptome sequencing to identify and score molecular markers representing variation in both gene sequences and gene expression, and correlate this with trait variation, facilitates the application of association genetics in a broad range of crops, even those with complex genomes.
Abstract: Sequencing a genome and identifying genetic markers lays the groundwork for genome-wide association studies, but can be difficult to achieve for polyploid species. Harper et al. present an approach for performing association studies using genetic maps and markers generated from transcriptome sequencing data alone and apply it to the polyploid crop Brassica napus.

284 citations

Journal ArticleDOI
TL;DR: An in-solution hybridization-based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full-length cDNAs and de novo assembled RNA-Seq consensus sequence contigs is developed.
Abstract: Summary Advanced resources for genome-assisted research in barley (Hordeum vulgare) including a whole-genome shotgun assembly and an integrated physical map have recently become available. These have made possible studies that aim to assess genetic diversity or to isolate single genes by whole-genome resequencing and in silico variant detection. However such an approach remains expensive given the 5 Gb size of the barley genome. Targeted sequencing of the mRNA-coding exome reduces barley genomic complexity more than 50-fold, thus dramatically reducing this heavy sequencing and analysis load. We have developed and employed an in-solution hybridization-based sequence capture platform to selectively enrich for a 61.6 megabase coding sequence target that includes predicted genes from the genome assembly of the cultivar Morex as well as publicly available full-length cDNAs and de novo assembled RNA-Seq consensus sequence contigs. The platform provides a highly specific capture with substantial and reproducible enrichment of targeted exons, both for cultivated barley and related species. We show that this exome capture platform provides a clear path towards a broader and deeper understanding of the natural variation residing in the mRNA-coding part of the barley genome and will thus constitute a valuable resource for applications such as mapping-by-sequencing and genetic diversity analyzes.

235 citations


Cited by
More filters
Journal ArticleDOI
Rudi Appels1, Rudi Appels2, Kellye Eversole, Nils Stein3  +204 moreInstitutions (45)
17 Aug 2018-Science
TL;DR: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
Abstract: An annotated reference sequence representing the hexaploid bread wheat genome in 21 pseudomolecules has been analyzed to identify the distribution and genomic context of coding and noncoding elements across the A, B, and D subgenomes. With an estimated coverage of 94% of the genome and containing 107,891 high-confidence gene models, this assembly enabled the discovery of tissue- and developmental stage-related coexpression networks by providing a transcriptome atlas representing major stages of wheat development. Dynamics of complex gene families involved in environmental adaptation and end-use quality were revealed at subgenome resolution and contextualized to known agronomic single-gene or quantitative trait loci. This community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.

2,118 citations

Journal ArticleDOI
Boulos Chalhoub1, Shengyi Liu2, Isobel A. P. Parkin3, Haibao Tang4, Haibao Tang5, Xiyin Wang6, Julien Chiquet1, Harry Belcram1, Chaobo Tong2, Birgit Samans7, Margot Correa8, Corinne Da Silva8, Jérémy Just1, Cyril Falentin9, Chu Shin Koh10, Isabelle Le Clainche1, Maria Bernard8, Pascal Bento8, Benjamin Noel8, Karine Labadie8, Adriana Alberti8, Mathieu Charles9, Dominique Arnaud1, Hui Guo6, Christian Daviaud, Salman Alamery11, Kamel Jabbari12, Kamel Jabbari1, Meixia Zhao13, Patrick P. Edger14, Houda Chelaifa1, David C. Tack15, Gilles Lassalle9, Imen Mestiri1, Nicolas Schnel9, Marie-Christine Le Paslier9, Guangyi Fan, Victor Renault16, Philippe E. Bayer11, Agnieszka A. Golicz11, Sahana Manoli11, Tae-Ho Lee6, Vinh Ha Dinh Thi1, Smahane Chalabi1, Qiong Hu2, Chuchuan Fan17, Reece Tollenaere11, Yunhai Lu1, Christophe Battail8, Jinxiong Shen17, Christine Sidebottom10, Xinfa Wang2, Aurélie Canaguier1, Aurélie Chauveau9, Aurélie Bérard9, G. Deniot9, Mei Guan18, Zhongsong Liu18, Fengming Sun, Yong Pyo Lim19, Eric Lyons20, Christopher D. Town4, Ian Bancroft21, Xiaowu Wang, Jinling Meng17, Jianxin Ma13, J. Chris Pires22, Graham J.W. King23, Dominique Brunel9, Régine Delourme9, Michel Renard9, Jean-Marc Aury8, Keith L. Adams15, Jacqueline Batley11, Jacqueline Batley24, Rod J. Snowdon7, Jörg Tost, David Edwards11, David Edwards24, Yongming Zhou17, Wei Hua2, Andrew G. Sharpe10, Andrew H. Paterson6, Chunyun Guan18, Patrick Wincker1, Patrick Wincker8, Patrick Wincker25 
22 Aug 2014-Science
TL;DR: The polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed, is sequenced.
Abstract: Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.

1,743 citations

Journal ArticleDOI
Tian Tian1, Yue Liu1, Hengyu Yan1, Qi You1, Xin Yi1, Zhou Du1, Wenying Xu1, Zhen Su1 
TL;DR: The updated agriGO that has a largely expanded number of supporting species and datatypes and more visualization features were added to the platform, including SEACOMPARE, direct acyclic graph (DAG) and Scatter Plots, which can be merged by choosing any significant GO term.
Abstract: The agriGO platform, which has been serving the scientific community for >10 years, specifically focuses on gene ontology (GO) enrichment analyses of plant and agricultural species. We continuously maintain and update the databases and accommodate the various requests of our global users. Here, we present our updated agriGO that has a largely expanded number of supporting species (394) and datatypes (865). In addition, a larger number of species have been classified into groups covering crops, vegetables, fish, birds and insects closely related to the agricultural community. We further improved the computational efficiency, including the batch analysis and P-value distribution (PVD), and the user-friendliness of the web pages. More visualization features were added to the platform, including SEACOMPARE (cross comparison of singular enrichment analysis), direct acyclic graph (DAG) and Scatter Plots, which can be merged by choosing any significant GO term. The updated platform agriGO v2.0 is now publicly accessible at http://systemsbiology.cau.edu.cn/agriGOv2/.

1,490 citations

Journal ArticleDOI
26 Nov 2015-Nature
TL;DR: The enrichment and initial characterization of two Nitrospira species that encode all the enzymes necessary for ammonia oxidation via nitrite to nitrate in their genomes, and indeed completely oxidize ammonium to nitrates to conserve energy are reported.
Abstract: Nitrification is a two-step process where ammonia is first oxidized to nitrite by ammonia-oxidizing bacteria and/or archaea, and subsequently to nitrate by nitrite-oxidizing bacteria. Already described by Winogradsky in 18901, this division of labour between the two functional groups is a generally accepted characteristic of the biogeochemical nitrogen cycle2. Complete oxidation of ammonia to nitrate in one organism (complete ammonia oxidation; comammox) is energetically feasible, and it was postulated that this process could occur under conditions selecting for species with lower growth rates but higher growth yields than canonical ammonia-oxidizing microorganisms3. Still, organisms catalysing this process have not yet been discovered. Here we report the enrichment and initial characterization of two Nitrospira species that encode all the enzymes necessary for ammonia oxidation via nitrite to nitrate in their genomes, and indeed completely oxidize ammonium to nitrate to conserve energy. Their ammonia monooxygenase (AMO) enzymes are phylogenetically distinct from currently identified AMOs, rendering recent acquisition by horizontal gene transfer from known ammonia-oxidizing microorganisms unlikely. We also found highly similar amoA sequences (encoding the AMO subunit A) in public sequence databases, which were apparently misclassified as methane monooxygenases. This recognition of a novel amoA sequence group will lead to an improved understanding of the environmental abundance and distribution of ammonia-oxidizing microorganisms. Furthermore, the discovery of the long-sought-after comammox process will change our perception of the nitrogen cycle.

1,225 citations

Journal ArticleDOI
TL;DR: Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenomes, suggesting asymmetric evolution.
Abstract: Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc. TM-1 genome by integrating whole-genome shotgun reads, bacterial artificial chromosome (BAC)-end sequences and genotype-by-sequencing genetic maps. We assembled and annotated 32,032 A-subgenome genes and 34,402 D-subgenome genes. Structural rearrangements, gene loss, disrupted genes and sequence divergence were more common in the A subgenome than in the D subgenome, suggesting asymmetric evolution. However, no genome-wide expression dominance was found between the subgenomes. Genomic signatures of selection and domestication are associated with positively selected genes (PSGs) for fiber improvement in the A subgenome and for stress tolerance in the D subgenome. This draft genome sequence provides a resource for engineering superior cotton lines.

1,221 citations