scispace - formally typeset
Search or ask a question
Author

Leandro M. Sousa

Bio: Leandro M. Sousa is an academic researcher from Federal University of Pará. The author has contributed to research in topics: Doradidae & Land cover. The author has an hindex of 14, co-authored 50 publications receiving 1419 citations. Previous affiliations of Leandro M. Sousa include National Institute of Amazonian Research & University of São Paulo.


Papers
More filters
Journal ArticleDOI
08 Jan 2016-Science
TL;DR: To achieve true sustainability, assessments of new projects must go beyond local impacts by accounting for synergies with existing dams, as well as land cover changes and likely climatic shifts, and call for more sophisticated and holistic hydropower planning.
Abstract: The world's most biodiverse river basins—the Amazon, Congo, and Mekong—are experiencing an unprecedented boom in construction of hydropower dams. These projects address important energy needs, but advocates often overestimate economic benefits and underestimate far-reaching effects on biodiversity and critically important fisheries. Powerful new analytical tools and high-resolution environmental data can clarify trade-offs between engineering and environmental goals and can enable governments and funding institutions to compare alternative sites for dam building. Current site-specific assessment protocols largely ignore cumulative impacts on hydrology and ecosystem services as ever more dams are constructed within a watershed ( 1 ). To achieve true sustainability, assessments of new projects must go beyond local impacts by accounting for synergies with existing dams, as well as land cover changes and likely climatic shifts ( 2 , 3 ). We call for more sophisticated and holistic hydropower planning, including validation of technologies intended to mitigate environmental impacts. Should anything less be required when tampering with the world's great river ecosystems?

1,067 citations

Journal ArticleDOI
TL;DR: This database, including 2,406 validated freshwater native fish species, 232,936 georeferenced records, results from an extensive survey of species distribution including 590 different sources, represents a highly valuable source of information for further studies on freshwater fish biodiversity, biogeography and conservation.
Abstract: The Amazon Basin is an unquestionable biodiversity hotspot, containing the highest freshwater biodiversity on earth and facing off a recent increase in anthropogenic threats. The current knowledge on the spatial distribution of the freshwater fish species is greatly deficient in this basin, preventing a comprehensive understanding of this hyper-diverse ecosystem as a whole. Filling this gap was the priority of a transnational collaborative project, i.e. the AmazonFish project - https://www.amazon-fish.com/. Relying on the outputs of this project, we provide the most complete fish species distribution records covering the whole Amazon drainage. The database, including 2,406 validated freshwater native fish species, 232,936 georeferenced records, results from an extensive survey of species distribution including 590 different sources (e.g. published articles, grey literature, online biodiversity databases and scientific collections from museums and universities worldwide) and field expeditions conducted during the project. This database, delivered at both georeferenced localities (21,500 localities) and sub-drainages grains (144 units), represents a highly valuable source of information for further studies on freshwater fish biodiversity, biogeography and conservation.

82 citations

Journal ArticleDOI
01 Jan 2017-Ecology
TL;DR: Analysis of seasonal changes in functional trait distributions of tropical fishes in the Xingu River, a major tributary of the Amazon with large predictable temporal variation in hydrologic conditions and species density, demonstrates that the relative influence of community assembly mechanisms can vary seasonally in response to changing abiotic conditions and suggests that studies attempting to infer a single dominant mechanism from functional patterns may overlook important aspects of the assembly process.
Abstract: Despite growing interest in trait-based approaches to community assembly, little attention has been given to seasonal variation in trait distribution patterns. Mobile animals can rapidly mediate influences of environmental factors and species interactions through dispersal, suggesting that the relative importance of different assembly mechanisms can vary over short time scales. This study analyzes seasonal changes in functional trait distributions of tropical fishes in the Xingu River, a major tributary of the Amazon with large predictable temporal variation in hydrologic conditions and species density. Comparison of observed functional diversity revealed that species within wet-season assemblages were more functionally similar than those in dry-season assemblages. Further, species within wet-season assemblages were more similar than random expectations based on null model predictions. Higher functional richness within dry season communities is consistent with increased niche complementarity during the period when fish densities are highest and biotic interactions should be stronger; however, null model tests suggest that stochastic factors or a combination of assembly mechanisms influence dry-season assemblages. These results demonstrate that the relative influence of community assembly mechanisms can vary seasonally in response to changing abiotic conditions, and suggest that studies attempting to infer a single dominant mechanism from functional patterns may overlook important aspects of the assembly process. During the prolonged flood pulse of the wet season, expanded habitat and lower densities of aquatic organisms likely reduce the influence of competition and predation. This temporal shift in the influence of different assembly mechanisms, rather than any single mechanism, may play a large role in maintaining the structure and diversity of tropical rivers and perhaps other dynamic and biodiverse systems.

70 citations

Journal ArticleDOI
23 Nov 2016-Zootaxa
TL;DR: The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa.
Abstract: The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemesio 2007; Donegan 2008, 2009; Nemesio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016.

59 citations

Journal ArticleDOI
TL;DR: In this article, the authors surveyed fish assemblages within rapids in the three segments impacted by the BMHC prior to hydrologic alteration, and tested for differences in assemblage structure between segments and seasons.

51 citations


Cited by
More filters
Journal Article
TL;DR: This research examines the interaction between demand and socioeconomic attributes through Mixed Logit models and the state of art in the field of automatic transport systems in the CityMobil project.
Abstract: 2 1 The innovative transport systems and the CityMobil project 10 1.1 The research questions 10 2 The state of art in the field of automatic transport systems 12 2.1 Case studies and demand studies for innovative transport systems 12 3 The design and implementation of surveys 14 3.1 Definition of experimental design 14 3.2 Questionnaire design and delivery 16 3.3 First analyses on the collected sample 18 4 Calibration of Logit Multionomial demand models 21 4.1 Methodology 21 4.2 Calibration of the “full” model. 22 4.3 Calibration of the “final” model 24 4.4 The demand analysis through the final Multinomial Logit model 25 5 The analysis of interaction between the demand and socioeconomic attributes 31 5.1 Methodology 31 5.2 Application of Mixed Logit models to the demand 31 5.3 Analysis of the interactions between demand and socioeconomic attributes through Mixed Logit models 32 5.4 Mixed Logit model and interaction between age and the demand for the CTS 38 5.5 Demand analysis with Mixed Logit model 39 6 Final analyses and conclusions 45 6.1 Comparison between the results of the analyses 45 6.2 Conclusions 48 6.3 Answers to the research questions and future developments 52

4,784 citations

01 Jan 2016
TL;DR: The remote sensing and image interpretation is universally compatible with any devices to read and is available in the digital library an online access to it is set as public so you can get it instantly.
Abstract: Thank you very much for downloading remote sensing and image interpretation. As you may know, people have look hundreds times for their favorite novels like this remote sensing and image interpretation, but end up in malicious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they are facing with some malicious virus inside their computer. remote sensing and image interpretation is available in our digital library an online access to it is set as public so you can get it instantly. Our book servers spans in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Merely said, the remote sensing and image interpretation is universally compatible with any devices to read.

1,802 citations

Journal ArticleDOI

1,380 citations

Journal ArticleDOI
TL;DR: Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.
Abstract: In the 12 years since Dudgeon et al. (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world’s lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth’s surface, these ecosystems host at least 9.5% of the Earth’s described animal species. Furthermore, using the World Wide Fund for Nature’s Living Planet Index, freshwater population declines (83% between 1970 and 2014) continue to outpace contemporaneous declines in marine or terrestrial systems. The Anthropocene has brought multiple new and varied threats that disproportionately impact freshwater systems. We document 12 emerging threats to freshwater biodiversity that are either entirely new since 2006 or have since intensified: (i) changing climates; (ii) e-commerce and invasions; (iii) infectious diseases; (iv) harmful algal blooms; (v) expanding hydropower; (vi) emerging contaminants; (vii) engineered nanomaterials; (viii) microplastic pollution; (ix) light and noise; (x) freshwater salinisation; (xi) declining calcium; and (xii) cumulative stressors. Effects are evidenced for amphibians, fishes, invertebrates, microbes, plants, turtles and waterbirds, with potential for ecosystem-level changes through bottom-up and top-down processes. In our highly uncertain future, the net effects of these threats raise serious concerns for freshwater ecosystems. However, we also highlight opportunities for conservation gains as a result of novel management tools (e.g. environmental flows, environmental DNA) and specific conservation-oriented actions (e.g. dam removal, habitat protection policies,managed relocation of species) that have been met with varying levels of success.Moving forward, we advocate hybrid approaches that manage fresh waters as crucial ecosystems for human life support as well as essential hotspots of biodiversity and ecological function. Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.

1,230 citations

Journal ArticleDOI
01 May 2019-Nature
TL;DR: A comprehensive assessment of the world’s rivers and their connectivity shows that only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length.
Abstract: Free-flowing rivers (FFRs) support diverse, complex and dynamic ecosystems globally, providing important societal and economic services. Infrastructure development threatens the ecosystem processes, biodiversity and services that these rivers support. Here we assess the connectivity status of 12 million kilometres of rivers globally and identify those that remain free-flowing in their entire length. Only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length and 23 per cent flow uninterrupted to the ocean. Very long FFRs are largely restricted to remote regions of the Arctic and of the Amazon and Congo basins. In densely populated areas only few very long rivers remain free-flowing, such as the Irrawaddy and Salween. Dams and reservoirs and their up- and downstream propagation of fragmentation and flow regulation are the leading contributors to the loss of river connectivity. By applying a new method to quantify riverine connectivity and map FFRs, we provide a foundation for concerted global and national strategies to maintain or restore them. A comprehensive assessment of the world’s rivers and their connectivity shows that only 37 per cent of rivers longer than 1,000 kilometres remain free-flowing over their entire length.

1,071 citations