scispace - formally typeset
Search or ask a question
Author

Lech Pawlowski

Bio: Lech Pawlowski is an academic researcher from University of Limoges. The author has contributed to research in topics: Thermal spraying & Microstructure. The author has an hindex of 34, co-authored 140 publications receiving 4961 citations. Previous affiliations of Lech Pawlowski include École nationale supérieure de chimie de Lille & Artois University.


Papers
More filters
Book
14 Feb 1995
TL;DR: In this article, the authors present a detailed overview of the main steps in the process of spraying particles and their properties, including properties such as temperature, surface properties, and surface properties.
Abstract: Preface to the Second Edition. Preface to the First Edition. Acronyms, Abbreviations and Symbols. 1 Materials Used for Spraying. 1.1 Methods of Powders Production. 1.1.1 Atomization. 1.1.2 Sintering or Fusion. 1.1.3 Spray Drying (Agglomeration). 1.1.4 Cladding. 1.1.5 Mechanical Alloying (Mechanofusion). 1.1.6 Self-propagating High-temperature Synthesis (SHS). 1.1.7 Other Methods. 1.2 Methods of Powders Characterization. 1.2.1 Grain Size. 1.2.2 Chemical and Phase Composition. 1.2.3 Internal and External Morphology. 1.2.4 High-temperature Behaviour. 1.2.5 Apparent Density and Flowability. 1.3 Feeding, Transport and Injection of Powders. 1.3.1 Powder Feeders. 1.3.2 Transport of Powders. 1.3.3 Injection of Powders. References. 2 Pre-Spray Treatment. 2.1 Introduction. 2.2 Surface Cleaning. 2.3 Substrate Shaping. 2.4 Surface Activation. 2.5 Masking. References. 3 Thermal Spraying Techniques. 3.1 Introduction. 3.2 Flame Spraying (FS). 3.2.1 History. 3.2.2 Principles. 3.2.3 Process Parameters. 3.2.4 Coating Properties. 3.3 Atmospheric Plasma Spraying (APS). 3.3.1 History. 3.3.2 Principles. 3.3.3 Process Parameters. 3.3.4 Coating Properties. 3.4 Arc Spraying (AS). 3.4.1 Principles. 3.4.2 Process Parameters. 3.4.3 Coating Properties. 3.5 Detonation-Gun Spraying (D-GUN). 3.5.1 History. 3.5.2 Principles. 3.5.3 Process Parameters. 3.5.4 Coating Properties. 3.6 High-Velocity Oxy-Fuel (HVOF) Spraying. 3.6.1 History. 3.6.2 Principles. 3.6.3 Process Parameters. 3.6.4 Coating Properties. 3.7 Vacuum Plasma Spraying (VPS). 3.7.1 History. 3.7.2 Principles. 3.7.3 Process Parameters. 3.7.4 Coating Properties. 3.8 Controlled-Atmosphere Plasma Spraying (CAPS). 3.8.1 History. 3.8.2 Principles. 3.8.3 Process Parameters. 3.8.4 Coating Properties. 3.9 Cold-Gas Spraying Method (CGSM). 3.9.1 History. 3.9.2 Principles. 3.9.3 Process Parameters. 3.9.4 Coating Properties. 3.10 New Developments in Thermal Spray Techniques. References. 4 Post-Spray Treatment. 4.1 Heat Treatment. 4.1.1 Electromagnetic Treatment. 4.1.2 Furnace Treatment. 4.1.3 Hot Isostatic Pressing (HIP). 4.1.4 Combustion Flame Re-melting. 4.2 Impregnation. 4.2.1 Inorganic Sealants. 4.2.2 Organic Sealants. 4.3 Finishing. 4.3.1 Grinding. 4.3.2 Polishing and Lapping. References. 5 Physics and Chemistry of Thermal Spraying. 5.1 Jets and Flames. 5.1.1 Properties of Jets and Flames. 5.2 Momentum Transfer between Jets or Flames and Sprayed Particles. 5.2.1 Theoretical Description. 5.2.2 Experimental Determination of Sprayed Particles' Velocities. 5.2.3 Examples of Experimental Determination of Particles Velocities. 5.3 Heat Transfer between Jets or Flames and Sprayed Particles. 5.3.1 Theoretical Description. 5.3.2 Methods of Particles' Temperature Measurements. 5.4 Chemical Modification at Flight of Sprayed Particles. References. 6 Coating Build-Up. 6.1 Impact of Particles. 6.1.1 Particle Deformation. 6.1.2 Particle Temperature at Impact. 6.1.3 Nucleation, Solidification and Crystal Growth. 6.1.4 Mechanisms of Adhesion. 6.2 Coating Growth. 6.2.1 Mechanism of Coating Growth. 6.2.2 Temperature of Coatings at Spraying. 6.2.3 Generation of Thermal Stresses at Spraying. 6.2.4 Coatings Surfaces. 6.3 Microstructure of the Coatings. 6.3.1 Crystal Phase Composition. 6.3.2 Coatings' Inhomogeneity. 6.3.3 Final Microstructure of Sprayed Coatings. 6.4 Thermally Sprayed Composites. 6.4.1 Classification of Sprayed Composites. 6.4.2 Composite Coating Manufacturing. References. 7 Methods of Coatings' Characterization. 7.1 Methods of Microstructure Characterization. 7.1.1 Methods of Chemical Analysis. 7.1.2 Crystallographic Analyses. 7.1.3 Microstructure Analyses. 7.1.4 Other Applied Methods. 7.2 Mechanical Properties of Coatings. 7.2.1 Adhesion Determination. 7.2.2 Hardness and Microhardness. 7.2.3 Elastic Moduli, Strength and Ductility. 7.2.4 Properties Related to Mechanics of Coating Fracture. 7.2.5 Friction and Wear. 7.2.6 Residual Stresses. 7.3 Physical Properties of Coatings. 7.3.1 Thickness, Porosity and Density. 7.3.2 Thermophysical Properties. 7.3.3 Thermal Shock Resistance. 7.4 Electrical Properties of Coatings. 7.4.1 Electrical Conductivity. 7.4.2 Properties of Dielectrics. 7.4.3 Electron Emission from Surfaces. 7.5 Magnetic Properties of Coatings. 7.6 Chemical Properties of Coatings. 7.6.1 Aqueous Corrosion. 7.6.2 Hot-gas Corrosion. 7.7 Characterization of Coatings' Quality. 7.7.1 Acoustical Methods. 7.7.2 Thermal Methods. References. 8 Properties of Coatings. 8.1 Design of Experiments. 8.2 Mechanical Properties. 8.2.1 Hardness and Microhardness. 8.2.2 Tensile Adhesion Strength. 8.2.3 Elastic Moduli, Strengths and Fracture Toughness. 8.2.4 Friction and Wear. 8.3 Thermophysical Properties. 8.3.1 Thermal Conductivity and Diffusivity. 8.3.2 Specific Heat. 8.3.3 Thermal Expansion. 8.3.4 Emissivity. 8.3.5 Thermal Shock Resistance. 8.4 Electric Properties. 8.4.1 Properties of Conductors. 8.4.2 Properties of Resistors. 8.4.3 Properties of Dielectrics. 8.4.4 Electric Field Emitters. 8.4.5 Properties of Superconductors. 8.5 Magnetic Properties. 8.5.1 Soft Magnets. 8.5.2 Hard Magnets. 8.6 Optical Properties. 8.6.1 Decorative Coatings. 8.6.2 Optically Functional Coatings. 8.7 Corrosion Resistance. 8.7.1 Aqueous Corrosion. 8.7.2 Hot-medium Corrosion. References. 9 Applications of Coatings. 9.1 Aeronautical and Space Industries. 9.1.1 Aero-engines. 9.1.2 Landing-gear Components. 9.1.3 Rocket Thrust-chamber Liners. 9.2 Agroalimentary Industry. 9.3 Automobile Industry. 9.4 Ceramics Industry. 9.4.1 Free-standing Samples. 9.4.2 Brick-Clay Extruders. 9.4.3 Crucibles to Melt Oxide Ceramics. 9.4.4 Ceramic Membranes. 9.5 Chemical Industry. 9.5.1 Photocatalytic Surfaces. 9.5.2 Tools in Petrol Search Installations. 9.5.3 Vessels in Chemical Refineries. 9.5.4 Gas-well Tubing. 9.5.5 Polymeric Coatings on Pipeline Components. 9.5.6 Ozonizer Tubes. 9.6 Civil Engineering. 9.7 Decorative Coatings. 9.8 Electronics Industry. 9.8.1 Heaters. 9.8.2 Sources for Sputtering. 9.8.3 Substrates for Hybrid Microelectronics. 9.8.4 Capacitor Electrodes. 9.8.5 Conductor Paths for Hybrid Electronics. 9.8.6 Microwave Integrated Circuits. 9.9 Energy Generation and Transport. 9.9.1 Solid-oxide Fuel Cell (SOFCs). 9.9.2 Thermopile Devices for Thermoelectric Generators. 9.9.3 Boilers in Power-generation Plants. 9.9.4 Stationary Gas Turbines. 9.9.5 Hydropower Stations. 9.9.6 MHD Generators. 9.10 Iron and Steel Industries. 9.10.1 Continuous Annealing Line (CAL). 9.10.2 Continuous Galvanizing Section. 9.10.3 Stave Cooling Pipes. 9.11 Machine Building Industry. 9.12 Medicine. 9.13 Mining Industry. 9.14 Non-ferrous Metal Industry. 9.14.1 Hot-extrusion Dies. 9.14.2 Protective Coatings against Liquid Copper. 9.14.3 Protective Coatings against Liquid Zirconium. 9.15 Nuclear Industry. 9.15.1 Components of Tokamak Device. 9.15.2 Magnetic-fusion Energy Device. 9.16 Paper Industry. 9.16.1 Dryers. 9.16.2 Gloss Calender Rolls. 9.16.3 Tubing in Boilers. 9.17 Printing and Packaging Industries. 9.17.1 Corona Rolls. 9.17.2 Anilox Rolls. 9.18 Shipbuiding and Naval Industries. 9.18.1 Marine Gas-turbine Engines. 9.18.2 Steam Valve Stems. 9.18.3 Non-skid Helicopter Flight Deck. References. Index.

1,688 citations

Journal ArticleDOI
TL;DR: In this article, the emerging methods of coating deposition by suspension and solution thermal spraying are described, where liquid suspensions of fine powders and liquid precursors are injected into flames and/or jets generated in the torches.
Abstract: The emerging methods of coating deposition by suspension and solution thermal spraying are described. The liquid suspensions of fine powders and liquid precursors are injected into flames and/or jets generated in the torches. The formulation and stability of suspensions as well as the methods of fine powders synthesis are briefly described. Typical solutions, being often the liquid organo–metallics are also briefly described. An important problem of injection of liquids into jets and flames is then presented. Two principal modes of injection, used at present, are outlined, i.e.: (i) atomization; and, (ii) injection of a continuous jet. Subsequently, the phenomena occurring in flames and plasma jets are discussed and the major differences to these occurring during conventional spraying are stressed up. The build up of coatings starting from the impact of fine particles on the substrate is described and typical microstructures of suspension and solution sprayed coatings are shown. Some properties of the sprayed coatings, including mechanical, electrical, chemical, and thermophysical ones are collected and presented. Finally, the emerging applications of coatings are shown and the possible future applications are discussed.

327 citations

Journal ArticleDOI
TL;DR: In this article, the physical and chemical phenomena occurring at flight of injected liquid droplet of solution and suspension are shown and related to the formation of coatings and their microstructure.
Abstract: Technology, microstructure and properties of nanostructured coatings obtained using different feedstock including: (i) powders composed of agglomerated nanocrystals; (ii) solutions; and (iii) suspensions are discussed. The methods of nanostructured coarse powders manufacturing are reviewed together with the problems related to formulation of solutions and suspensions. A particular attention is paid to the key problem at liquid feedstock spraying, namely to their delivery and injection into jets or flames. The physical and chemical phenomena occurring at flight of injected liquid droplet of solution and suspension are shown and related to the formation of coatings and their microstructure. Some microstructural, chemical, mechanical and electrical properties of coatings are collected and related to the operational processing parameters by regression equations derived from the design of spray experiments. Finally, the possible applications of nanostructured coatings are briefly discussed.

153 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the applications of lasers in coating deposition processes and describe the mechanism of interaction between a laser beam with typical coating materials, and the typical laser treatment processes are depicted and their characteristics are shown.
Abstract: This article describes the applications of lasers in coating deposition processes. After an introduction concerning the types and principal characteristics of the laser and the emitted light beams, a description of the mechanism of interaction between a laser beam with typical coating materials is presented. The typical laser treatment processes are depicted, and their characteristics are shown. Recent papers on coatings produced in one-step and two-step laser deposition are reviewed. Finally, the emerging applications of laser processes in thermal spray coatings are discussed.

142 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a survey of the design of experiments for thermal spraying and post-spray treatment of polyurethane polysilicon polyurethanylene glycol (PPGP) coatings.
Abstract: The designs of experiments (DOE) methodology useful for thermal spraying and associated processes of post-spray treatment are thoroughlyreviewed. The designs Hadamard (Plackett–Burman), two-level full and fractional factorial and also the response surfaces methodology arebriefly described. The designs enable to obtain a polynomial regression equation which expresses the influence of process parameters on theresponse. The methods of determining of the significant coefficients of the regression equation (factors) are discussed. Examples of the applicationof different designs to determine the response equations with the responses related to microstructure, mechanical, electrical and other propertiesofcoatings deposited using different thermal spray and post-spray processes are presented and discussed.© 2008 Elsevier B.V. All rights reserved. Keywords: Design of experiments; Parameters of thermal spraying processes 1. IntroductionThermal spraying is the family of coating depositionprocesses in which molten, semi-molten or solid particles aredeposited onto a substrate. The microstructure of the coatingsresults from their solidification and sintering [1]. The processesuse hot gas, flame or plasma to accelerate the particles and toheat them up. Obtained coatings have alamellar microstructure,which determines many of coatings properties. Since theoptimization of coatings properties for a given specificationneeds a careful control of the operational spray parameters andthe statistical methods can be useful in preparation of theexperiments. The initial step in the design of experiments is achoice of variables being process parameters. In the simplestcase, the parameters are fixed at low (−1) and high (+1) level.The experimental space is defined inside these parametersvalues. The choice of parameters needs some understanding ofthe processas thereare as many as 50processvariables[2].Thefirst group of variables is related to the feedstock and concerns,supposing powder feedstock, mainly [3]:• size distribution of powder;• powder feed rate;• powdermorphology,suchase.g.shape,internalporosity,etc.Typical variables for atmospheric plasma spraying are asfollows:• composition of working gas, such as e.g. vol.% of hydrogenin argon–hydrogen mixture;• spray distance;• powder feed rate;• electric power input;• carrier gas flow rate.For high velocity oxy-fuel spraying, it is useful to add alsoanother variable which is the ratio of fuel gas to oxygen [4]as well as other parameters for arc spraying, flame sprayingor cold gas spraying. Another problem concerns pre-spray(sand blasting) and post-spray treatment (laser glazing, hotisostatic pressing, infiltration…), which also is frequently

130 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: For the first time, a multi-variables optimization approach is described to determine the optimum operation parameters so as to enhance process performance and photooxidation efficiency in the photocatalytic water treatment process.

4,293 citations

Book
12 Mar 2014
TL;DR: In this paper, the effect of reflectivity of the surface, when a pure, monochromatic laser (6) is used, is remedied by the simultaneous application of a relatively shorter wavelength beam (1).
Abstract: In the laser treatment of a workpiece (9), e.g. for surface hardening, melting, alloying, cladding, welding or cutting, the adverse effect of reflectivity of the surface, when a pure, monochromatic laser (6) is used, is remedied by the simultaneous application of a relatively shorter wavelength beam (1). The two beams (1)(5) may be combined by a beam coupler (4) or may reach the workpiece (9) by separate optical paths (not shown). The shorter wavelength beam (1) improves the coupling efficiency of the higher- powered laser beam (5).

1,539 citations

Journal ArticleDOI
TL;DR: In this paper, the physics and chemistry of the plasma jet and other atmospheric pressure sources are reviewed, including transferred arcs, plasma torches, corona discharges, and dielectric barrier discharges.
Abstract: Atmospheric-pressure plasmas are used in a variety of materials processes. Traditional sources include transferred arcs, plasma torches, corona discharges, and dielectric barrier discharges. In arcs and torches, the electron and neutral temperatures exceed 3000/spl deg/C and the densities of charge species range from 10/sup 16/-10/sup 19/ cm/sup -3/. Due to the high gas temperature, these plasmas are used primarily in metallurgy. Corona and dielectric barrier discharges produce nonequilibrium plasmas with gas temperatures between 50-400/spl deg/C and densities of charged species typical of weakly ionized gases. However, since these discharges are nonuniform, their use in materials processing is limited. Recently, an atmospheric-pressure plasma jet has been developed, which exhibits many characteristics of a conventional, low-pressure glow discharge. In the jet, the gas temperature ranges from 25-200/spl deg/C, charged-particle densities are 10/sup 11/-10/sup 12/ cm/sup -3/, and reactive species are present in high concentrations, i.e., 10-100 ppm. Since this source may be scaled to treat large areas, it could be used in applications which have been restricted to vacuum. In this paper, the physics and chemistry of the plasma jet and other atmospheric-pressure sources are reviewed.

1,288 citations

Journal ArticleDOI
01 Sep 2017-Friction
TL;DR: In this paper, the impact of friction and wear on energy consumption, economic expenditure, and CO2 emissions is presented on a global scale, covering four main energy consuming sectors: transportation, manufacturing, power generation, and residential.
Abstract: Calculations of the impact of friction and wear on energy consumption, economic expenditure, and CO2 emissions are presented on a global scale. This impact study covers the four main energy consuming sectors: transportation, manufacturing, power generation, and residential. Previously published four case studies on passenger cars, trucks and buses, paper machines and the mining industry were included in our detailed calculations as reference data in our current analyses. The following can be concluded: Fifty years ago, wear and wear-related failures were a major concern for UK industry and their mitigation was considered to be the major contributor to potential economic savings by as much as 95% in ten years by the development and deployment of new tribological solutions. The corresponding estimated savings are today still of the same orders but the calculated contribution to cost reduction is about 74% by friction reduction and to 26% from better wear protection. Overall, wear appears to be more critical than friction as it may result in catastrophic failures and operational breakdowns that can adversely impact productivity and hence cost.

966 citations

Journal ArticleDOI
TL;DR: In this paper, a summary of the actual knowledge in plasma spraying with an emphasis on the points where work is still in progress is presented, including: the plasma torches with the resulting plasma jets and their interactions with the surrounding environment, powder injection with the heat, momentum and mass transfers between particles and first plasma jets, the particles flattening and solidification, forming splats which then layer to form the coating.
Abstract: This article intends to summarize our actual knowledge in plasma spraying with an emphasis on the points where work is still in progress. It presents successively: the plasma torches with the resulting plasma jets and their interactions with the surrounding environment; the powder injection with the heat, momentum and mass transfers between particles and first plasma jets and then plasma plume; the particles flattening and solidification, forming splats which then layer to form the coating; the latest developments related to the production of plasma sprayed finely structured coatings.

699 citations