scispace - formally typeset
Search or ask a question
Author

Lee A. Weigt

Bio: Lee A. Weigt is an academic researcher from National Museum of Natural History. The author has contributed to research in topics: DNA barcoding & Population. The author has an hindex of 29, co-authored 45 publications receiving 5728 citations. Previous affiliations of Lee A. Weigt include Smithsonian Institution & Field Museum of Natural History.

Papers
More filters
Journal ArticleDOI
TL;DR: Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.
Abstract: Methods for identifying species by using short orthologous DNA sequences, known as “DNA barcodes,” have been proposed and initiated to facilitate biodiversity studies, identify juveniles, associate sexes, and enhance forensic analyses. The cytochrome c oxidase 1 sequence, which has been found to be widely applicable in animal barcoding, is not appropriate for most species of plants because of a much slower rate of cytochrome c oxidase 1 gene evolution in higher plants than in animals. We therefore propose the nuclear internal transcribed spacer region and the plastid trnH-psbA intergenic spacer as potentially usable DNA regions for applying barcoding to flowering plants. The internal transcribed spacer is the most commonly sequenced locus used in plant phylogenetic investigations at the species level and shows high levels of interspecific divergence. The trnH-psbA spacer, although short (≈450-bp), is the most variable plastid region in angiosperms and is easily amplified across a broad range of land plants. Comparison of the total plastid genomes of tobacco and deadly nightshade enhanced with trials on widely divergent angiosperm taxa, including closely related species in seven plant families and a group of species sampled from a local flora encompassing 50 plant families (for a total of 99 species, 80 genera, and 53 families), suggest that the sequences in this pair of loci have the potential to discriminate among the largest number of plant species for barcoding purposes.

1,702 citations

Journal ArticleDOI
TL;DR: Patterns of divergence exhibited by allozymes and the mitochondrial COI gene are highly concordant for 15 pairs of snapping shrimp in the genus Alpheus, indicating that they provide a reasonable basis for estimating time since cessation of gene flow.
Abstract: Sister species separated by the Isthmus of Panama have been widely used to estimate rates of molecular evolution These estimates are based on the assumption that geographic isolation occurred nearly simultaneously for most taxa, when connections between the Caribbean and eastern Pacific closed approximately three million years ago Here we show that this assumption is invalid for the only genus for which many taxa and multiple genetic markers have been analysed Patterns of divergence exhibited by allozymes and the mitochondrial COI gene are highly concordant for 15 pairs of snapping shrimp in the genus Alpheus , indicating that they provide a reasonable basis for estimating time since cessation of gene flow The extent of genetic divergence between pairs of sister species varied over fourfold Sister species from mangrove environments showed the least divergence, as would be expected if these were among the last habitats to be divided Using this pair yields a rate of sequence divergence of 14% per one million years, with implied times of separation for the 15 pairs of 3 to 18 million years ago Many past studies may have overestimated rates of molecular evolution because they sampled pairs that were separated well before final closure of the Isthmus

825 citations

Journal ArticleDOI
11 Jun 1993-Science
TL;DR: Measurements of biochemical and reproductive divergence for seven closely related, transisthmian pairs of snapping shrimps indicate, however, that isolation was staggered rather than simultaneous, and the four least divergent pairs provide the best estimate for rates of molecular divergence and speciation.
Abstract: It is widely believed that gene flow connected many shallow water populations of the Caribbean and eastern Pacific until the Panama seaway closed 3.0 to 3.5 million years ago. Measurements of biochemical and reproductive divergence for seven closely related, transisthmian pairs of snapping shrimps (Alpheus) indicate, however, that isolation was staggered rather than simultaneous. The four least divergent pairs provide the best estimate for rates of molecular divergence and speciation. Ecological, genetic, and geological data suggest that gene flow was disrupted for the remaining three pairs by environmental change several million years before the land barrier was complete.

519 citations

Journal ArticleDOI
TL;DR: The consistent finding of constrained intraspecific mitochondrial variation in this large assemblage of species supports the emerging view that selective sweeps limit mitochondrial diversity.
Abstract: DNA barcoding seeks to assemble a standardized reference library for DNA-based identification of eukaryotic species. The utility and limitations of this approach need to be tested on well-characterized taxonomic assemblages. Here we provide a comprehensive DNA barcode analysis for North American birds including 643 species representing 93% of the breeding and pelagic avifauna of the USA and Canada. Most (94%) species possess distinct barcode clusters, with average neighbour-joining bootstrap support of 98%. In the remaining 6%, barcode clusters correspond to small sets of closely related species, most of which hybridize regularly. Fifteen (2%) currently recognized species are comprised of two distinct barcode clusters, many of which may represent cryptic species. Intraspecific variation is weakly related to census population size and species age. This study confirms that DNA barcoding can be effectively applied across the geographical and taxonomic expanse of North American birds. The consistent finding of constrained intraspecific mitochondrial variation in this large assemblage of species supports the emerging view that selective sweeps limit mitochondrial diversity.

484 citations

Journal ArticleDOI
17 Jan 1992-Science
TL;DR: The Caribbean coral Montastraea annularis is shown to consist of at least three sibling species in shallow waters, and the two most commonly studied show highly significant differences in growth rate and oxygen isotopic ratios.
Abstract: Measures of growth and skeletal isotopic ratios in the Caribbean coral Montastraea annularis are fundamental to many studies of paleoceanography, environmental degradation, and global climate change. This taxon is shown to consist of at least three sibling species in shallow waters. The two most commonly studied of these show highly significant differences in growth rate and oxygen isotopic ratios, parameters routinely used to estimate past climatic conditions; unusual coloration in the third may have confused research on coral bleaching. Interpretation or comparison of past and current studies can be jeopardized by ignoring these species boundaries.

272 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: It is established that the mitochondrial gene cytochrome c oxidase I (COI) can serve as the core of a global bioidentification system for animals and will provide a reliable, cost–effective and accessible solution to the current problem of species identification.
Abstract: Although much biological research depends upon species diagnoses, taxonomic expertise is collapsing. We are convinced that the sole prospect for a sustainable identification capability lies in the construction of systems that employ DNA sequences as taxon 'barcodes'. We establish that the mitochondrial gene cytochrome c oxidase I (COI) can serve as the core of a global bioidentification system for animals. First, we demonstrate that COI profiles, derived from the low-density sampling of higher taxonomic categories, ordinarily assign newly analysed taxa to the appropriate phylum or order. Second, we demonstrate that species-level assignments can be obtained by creating comprehensive COI profiles. A model COI profile, based upon the analysis of a single individual from each of 200 closely allied species of lepidopterans, was 100% successful in correctly identifying subsequent specimens. When fully developed, a COI identification system will provide a reliable, cost-effective and accessible solution to the current problem of species identification. Its assembly will also generate important new insights into the diversification of life and the rules of molecular evolution.

9,879 citations

Journal ArticleDOI

3,734 citations

Journal ArticleDOI
TL;DR: The results add to the evidence that cryptic species are prevalent in tropical regions, a critical issue in efforts to document global species richness, and illustrate the value of DNA barcoding, especially when coupled with traditional taxonomic tools, in disclosing hidden diversity.
Abstract: Astraptes fulgerator, first described in 1775, is a common and widely distributed neotropical skipper butterfly (Lepidoptera: Hesperiidae). We combine 25 years of natural history observations in northwestern Costa Rica with morphological study and DNA barcoding of museum specimens to show that A. fulgerator is a complex of at least 10 species in this region. Largely sympatric, these taxa have mostly different caterpillar food plants, mostly distinctive caterpillars, and somewhat different ecosystem preferences but only subtly differing adults with no genitalic divergence. Our results add to the evidence that cryptic species are prevalent in tropical regions, a critical issue in efforts to document global species richness. They also illustrate the value of DNA barcoding, especially when coupled with traditional taxonomic tools, in disclosing hidden diversity.

3,112 citations

Journal ArticleDOI
TL;DR: Automatic Barcode Gap Discovery is fast, simple method to split a sequence alignment data set into candidate species that should be complemented with other evidence in an integrative taxonomic approach.
Abstract: Within uncharacterized groups, DNA barcodes, short DNA sequences that are present in a wide range of species, can be used to assign organisms into species. We propose an automatic procedure that sorts the sequences into hypothetical species based on the barcode gap, which can be observed whenever the divergence among organisms belonging to the same species is smaller than divergence among organisms from different species. We use a range of prior intraspecific divergence to infer from the data a model-based one-sided confidence limit for intraspecific divergence. The method, called Automatic Barcode Gap Discovery (ABGD), then detects the barcode gap as the first significant gap beyond this limit and uses it to partition the data. Inference of the limit and gap detection are then recursively applied to previously obtained groups to get finer partitions until there is no further partitioning. Using six published data sets of metazoans, we show that ABGD is computationally efficient and performs well for standard prior maximum intraspecific divergences (a few per cent of divergence for the five data sets), except for one data set where less than three sequences per species were sampled. We further explore the theoretical limitations of ABGD through simulation of explicit speciation and population genetics scenarios. Our results emphasize in particular the sensitivity of the method to the presence of recent speciation events, via (unrealistically) high rates of speciation or large numbers of species. In conclusion, ABGD is fast, simple method to split a sequence alignment data set into candidate species that should be complemented with other evidence in an integrative taxonomic approach.

2,336 citations

Journal ArticleDOI
TL;DR: The 2-locus combination of rbcL+matK will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants.
Abstract: DNA barcoding involves sequencing a standard region of DNA as a tool for species identification. However, there has been no agreement on which region(s) should be used for barcoding land plants. To provide a community recommendation on a standard plant barcode, we have compared the performance of 7 leading candidate plastid DNA regions (atpF–atpH spacer, matK gene, rbcL gene, rpoB gene, rpoC1 gene, psbK–psbI spacer, and trnH–psbA spacer). Based on assessments of recoverability, sequence quality, and levels of species discrimination, we recommend the 2-locus combination of rbcL+matK as the plant barcode. This core 2-locus barcode will provide a universal framework for the routine use of DNA sequence data to identify specimens and contribute toward the discovery of overlooked species of land plants.

2,255 citations