scispace - formally typeset
Search or ask a question
Author

Lee Empringham

Bio: Lee Empringham is an academic researcher from University of Nottingham. The author has contributed to research in topics: Converters & Commutation. The author has an hindex of 30, co-authored 129 publications receiving 5137 citations. Previous affiliations of Lee Empringham include Control Group & Polytechnic University of Catalonia.


Papers
More filters
Journal ArticleDOI
TL;DR: The state-of-the-art view in the development of this matrix converter is presented, starting with a brief historical review and an important part of the paper is dedicated to a discussion of the most important modulation and control strategies developed recently.
Abstract: The matrix converter is an array of controlled semiconductor switches that connects directly the three-phase source to the three-phase load. This converter has several attractive features that have been investigated in the last two decades. In the last few years, an increase in research work has been observed, bringing this topology closer to the industrial application. This paper presents the state-of-the-art view in the development of this converter, starting with a brief historical review. An important part of the paper is dedicated to a discussion of the most important modulation and control strategies developed recently. Special attention is given to present modern methods developed to solve the commutation problem. Some new arrays of power bidirectional switches integrated in a single module are also presented. Finally, this paper includes some practical issues related to the practical application of this technology, like overvoltage protection, use of filters and ride-through capability.

1,879 citations

Journal ArticleDOI
TL;DR: This paper presents a review of the current state of the art in terms of practical matrix converter technologies and reports on the reported use of the matrix converters in different applications.
Abstract: This paper presents a review of the current state of the art in terms of practical matrix converter technologies. Present solutions to the numerous technological issues and challenges faced when implementing viable matrix converters are discussed. The reported use of the matrix converters in different applications is also presented together with a review of current industrial applications.

295 citations

Journal ArticleDOI
TL;DR: A multiphase two-level inverter using a flexible and reliable field-programmable gate-array/digital-signal-processor controller for data acquisition, motor control, and fault monitoring to study the fault tolerance of such systems.
Abstract: This paper describes an experimental tool to evaluate and support the development of fault-tolerant machines designed for aerospace motor drives. Aerospace applications involve essentially safety-critical systems which should be able to overcome hardware or software faults and therefore need to be fault tolerant. A way of achieving this is to introduce variable degrees of redundancy into the system by duplicating one or all of the operations within the system itself. Looking at motor drives, multiphase machines, such as multiphase brushless dc machines, are considered to be good candidates in the design of fault-tolerant aerospace motor drives. This paper introduces a multiphase two-level inverter using a flexible and reliable field-programmable gate-array/digital-signal-processor controller for data acquisition, motor control, and fault monitoring to study the fault tolerance of such systems.

174 citations

Journal Article
Patrick Wheeler1, Jon Clare1, Lee Empringham1, M. Bland1, K.G. Kerris 
TL;DR: In this article, a vector-controlled MCT matrix converter induction motor drive with minimized commutation time and enchanced waveform quality was designed and tested using a 12hp induction motor.
Abstract: This paper deals with the vector-controlled MCT matrix converter induction motor drive with minimized commutation time and enchanced waveform quality. It also deals with the design, construction, and testing of a 10-kVA three-phase to three-phase matrix converter induction motor drive. The converter has been built using discrete 65 A metal-oxide-semiconductor (MOS) controlled thyristors (MCTs). The commutation time has been minimized to avoid any unnecessary waveform distortion, particularly at low demanded output voltages. This minimization gives the matrix converter superior waveform quality in comparison to a conventional inverter and maximizes the available converter output voltage before over modulation is required. The converter is vector controlled and has been tested using a 12-hp induction motor. Full results of these tests are presented.

172 citations

Journal ArticleDOI
TL;DR: An optimized control system in the ABC frame employing a repetitive controller has been successfully implemented, taking into account both the transient and steady-state performance targets together with the system effectiveness under extreme unbalanced conditions.
Abstract: This paper deals with the design, control, and implementation of a three-phase ground power-supply unit for aircraft servicing. Instead of a classical back-to-back converter configuration, a three-phase direct ac-ac (matrix) converter has been used as the power conditioning core of the power supply, working in conjunction with input and output LC filters. An optimized control system in the ABC frame employing a repetitive controller has been successfully implemented, taking into account both the transient and steady-state performance targets together with the system effectiveness under extreme unbalanced conditions. Extensive experimental tests on a 7.5-kVA prototype prove the efficiency of the designed system in meeting the high demanding civil and military international standards requirements.

155 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry.
Abstract: Multilevel converters have been under research and development for more than three decades and have found successful industrial application. However, this is still a technology under development, and many new contributions and new commercial topologies have been reported in the last few years. The aim of this paper is to group and review these recent contributions, in order to establish the current state of the art and trends of the technology, to provide readers with a comprehensive and insightful review of where multilevel converter technology stands and is heading. This paper first presents a brief overview of well-established multilevel converters strongly oriented to their current state in industrial applications to then center the discussion on the new converters that have made their way into the industry. In addition, new promising topologies are discussed. Recent advances made in modulation and control of multilevel converters are also addressed. A great part of this paper is devoted to show nontraditional applications powered by multilevel converters and how multilevel converters are becoming an enabling technology in many industrial sectors. Finally, some future trends and challenges in the further development of this technology are discussed to motivate future contributions that address open problems and explore new possibilities.

3,415 citations

Journal ArticleDOI
TL;DR: This paper covers the high-power voltage-source inverter and the most used multilevel-inverter topologies, including the neutral-point-clamped, cascaded H-bridge, and flying-capacitor converters.
Abstract: This paper presents a technology review of voltage-source-converter topologies for industrial medium-voltage drives. In this highly active area, different converter topologies and circuits have found their application in the market. This paper covers the high-power voltage-source inverter and the most used multilevel-inverter topologies, including the neutral-point-clamped, cascaded H-bridge, and flying-capacitor converters. This paper presents the operating principle of each topology and a review of the most relevant modulation methods, focused mainly on those used by industry. In addition, the latest advances and future trends of the technology are discussed. It is concluded that the topology and modulation-method selection are closely related to each particular application, leaving a space on the market for all the different solutions, depending on their unique features and limitations like power or voltage level, dynamic performance, reliability, costs, and other technical specifications.

2,254 citations

Journal ArticleDOI
TL;DR: The state-of-the-art view in the development of this matrix converter is presented, starting with a brief historical review and an important part of the paper is dedicated to a discussion of the most important modulation and control strategies developed recently.
Abstract: The matrix converter is an array of controlled semiconductor switches that connects directly the three-phase source to the three-phase load. This converter has several attractive features that have been investigated in the last two decades. In the last few years, an increase in research work has been observed, bringing this topology closer to the industrial application. This paper presents the state-of-the-art view in the development of this converter, starting with a brief historical review. An important part of the paper is dedicated to a discussion of the most important modulation and control strategies developed recently. Special attention is given to present modern methods developed to solve the commutation problem. Some new arrays of power bidirectional switches integrated in a single module are also presented. Finally, this paper includes some practical issues related to the practical application of this technology, like overvoltage protection, use of filters and ride-through capability.

1,879 citations

Journal ArticleDOI
TL;DR: The feasibility and great potential of FCS-MPC due to present-day signal-processing capabilities, particularly for power systems with a reduced number of switching states and more complex operating principles, such as matrix converters are found.
Abstract: This paper presents a detailed description of finite control set model predictive control (FCS-MPC) applied to power converters Several key aspects related to this methodology are, in depth, presented and compared with traditional power converter control techniques, such as linear controllers with pulsewidth-modulation-based methods The basic concepts, operating principles, control diagrams, and results are used to provide a comparison between the different control strategies The analysis is performed on a traditional three-phase voltage source inverter, used as a simple and comprehensive reference frame However, additional topologies and power systems are addressed to highlight differences, potentialities, and challenges of FCS-MPC Among the conclusions are the feasibility and great potential of FCS-MPC due to present-day signal-processing capabilities, particularly for power systems with a reduced number of switching states and more complex operating principles, such as matrix converters In addition, the possibility to address different or additional control objectives easily in a single cost function enables a simple, flexible, and improved performance controller for power-conversion systems

1,554 citations

Journal ArticleDOI
TL;DR: The paper shows how the use of FCS-MPC provides a simple and efficient computational realization for different control objectives in Power Electronics.
Abstract: This paper addresses to some of the latest contributions on the application of Finite Control Set Model Predictive Control (FCS-MPC) in Power Electronics. In FCS-MPC , the switching states are directly applied to the power converter, without the need of an additional modulation stage. The paper shows how the use of FCS-MPC provides a simple and efficient computational realization for different control objectives in Power Electronics. Some applications of this technology in drives, active filters, power conditioning, distributed generation and renewable energy are covered. Finally, attention is paid to the discussion of new trends in this technology and to the identification of open questions and future research topics.

1,331 citations