scispace - formally typeset
Search or ask a question
Author

Lei Ying

Bio: Lei Ying is an academic researcher from South China University of Technology. The author has contributed to research in topics: Polymer solar cell & Polymer. The author has an hindex of 45, co-authored 248 publications receiving 8650 citations. Previous affiliations of Lei Ying include China University of Technology & University of California, Santa Barbara.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, two non-fullerene acceptors were matched with a wide-bandgap polymer donor P2F-EHp consisting of an imide-functionalized benzotriazole moiety, as these materials presented complementary absorption and well-matched energy levels.
Abstract: To achieve high photovoltaic performance of bulk hetero-junction organic solar cells (OSCs), a range of critical factors including absorption profiles, energy level alignment, charge carrier mobility and miscibility of donor and acceptor materials should be carefully considered. For electron-donating materials, the deep highest occupied molecular orbital (HOMO) energy level that is beneficial for high open-circuit voltage is much appreciated. However, a new issue in charge transfer emerges when matching such a donor with an acceptor that has a shallower HOMO energy level. More to this point, the chemical strategies used to enhance the absorption coefficient of acceptors may lead to increased molecular crystallinity, and thus result in less controllable phase-separation of photoactive layer. Therefore, to realize balanced photovoltaic parameters, the donor-acceptor combinations should simultaneously address the absorption spectra, energy levels, and film morphologies. Here, we selected two non-fullerene acceptors, namely BTPT-4F and BTPTT-4F, to match with a wide-bandgap polymer donor P2F-EHp consisting of an imide-functionalized benzotriazole moiety, as these materials presented complementary absorption and well-matched energy levels. By delicately optimizing the blend film morphology, we demonstrated an unprecedented power conversion efficiency of over 16% for the device based on P2F-EHp:BTPTT-4F, suggesting the great promise of materials matching toward high-performance OSCs.

799 citations

Journal ArticleDOI
TL;DR: A record high OFET hole mobility, as high as 23.7 cm(2) /Vs, is achieved in macroscopic aligned semiconducting polymers, which is insensitive to the polymer molecular weight.
Abstract: A record high OFET hole mobility, as high as 23.7 cm(2) /Vs, is achieved in macroscopic aligned semiconducting polymers. The high mobility is insensitive to the polymer molecular weight. Polymer chains are aligned along the fiber to facilitate intrachain charge transport.

539 citations

Journal ArticleDOI
TL;DR: The recent advances in WPLEDs are summarized with special attention paid to the design of novel luminescent dopants and device structures that minimize the gap from other lighting sources such as fluorescent lamps, light-emitting diodes based on inorganic semiconductors, and vacuum-deposited small-molecular devices, thus rendering WPL EDs equally competitive.
Abstract: White polymer light-emitting devices (WPLEDs) have become a field of immense interest in both scientific and industrial communities. They have unique advantages such as low cost, light weight, ease of device fabrication, and large area manufacturing. Applications of WPLEDs for solid-state lighting are of special interest because about 20% of the generated electricity on the earth is consumed by lighting. To date, incandescent light bulbs (with a typical power efficiency of 12-17 lm W(-1) ) and fluorescent lamps (about 40-70 lm W(-1) ) are the most widely used lighting sources. However, incandescent light bulbs convert 90% of their consumed power into heat while fluorescent lamps contain a small but significant amount of toxic mercury in the tube, which complicates an environmentally friendly disposal. Remarkably, the device performances of WPLEDs have recently been demonstrated to be as efficient as those of fluorescent lamps. Here, we summarize the recent advances in WPLEDs with special attention paid to the design of novel luminescent dopants and device structures. Such advancements minimize the gap (for both efficiency and stability) from other lighting sources such as fluorescent lamps, light-emitting diodes based on inorganic semiconductors, and vacuum-deposited small-molecular devices, thus rendering WPLEDs equally competitive as these counterparts currently in use for illumination purposes.

451 citations

Journal ArticleDOI
TL;DR: This tutorial review will summarize the advances in white emitting polymers and devices published up till April 2009 by major prestigious institutions in this field and summarize the new strategies to realize white emission with simultaneous fluorescent and/or phosphorescent emission from a single polymer.
Abstract: Within organic optoelectronics, polymer light-emitting devices (PLEDs) are regarded as an important class of devices which can convert electricity into light as a result of radiative decay taking place in semiconducting polymers. Recently, much effort has been devoted to developing efficient white emitting PLEDs for their potential applications in next-generation flat-panel displays and solid-state lighting sources. In this tutorial review, we will summarize the advances in white emitting polymers and devices published up till April 2009 by major prestigious institutions in this field. Special attention is paid to the recent progress in highly efficient devices realized by doping an electrophosphorescent guest into a polymer host and other approaches. Also we will summarize the new strategies to realize white emission with simultaneous fluorescent and/or phosphorescent emission from a single polymer in which singlet and/or triplet chromophores are incorporated into the polymer side or main chain through a covalent bond.

387 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Non-fullerene OSCs show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities, and this Review highlights these opportunities made possible by NF acceptors.
Abstract: Organic solar cells (OSCs) have been dominated by donor:acceptor blends based on fullerene acceptors for over two decades. This situation has changed recently, with non-fullerene (NF) OSCs developing very quickly. The power conversion efficiencies of NF OSCs have now reached a value of over 13%, which is higher than the best fullerene-based OSCs. NF acceptors show great tunability in absorption spectra and electron energy levels, providing a wide range of new opportunities. The coexistence of low voltage losses and high current generation indicates that new regimes of device physics and photophysics are reached in these systems. This Review highlights these opportunities made possible by NF acceptors, and also discuss the challenges facing the development of NF OSCs for practical applications.

2,117 citations

Journal ArticleDOI
TL;DR: Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs) as mentioned in this paper.
Abstract: Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure–property relationships, donor–acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field. Non-fullerene acceptors have been widely used in organic solar cells over the past 3 years. This Review focuses on the two most promising classes of non-fullerene acceptors — rylene diimide-based materials and fused-ring electron acceptors — and discusses structure–property relationships, donor– acceptor matching criteria and device physics, as well as future research directions for the field.

1,975 citations

Journal ArticleDOI
TL;DR: This review summarizes and discusses the latest progress concerning this rapidly developing research field, in which the majority of the reported TADF systems are discussed, along with their derived structure-property relationships, TadF mechanisms and applications.
Abstract: Organic materials that exhibit thermally activated delayed fluorescence (TADF) are an attractive class of functional materials that have witnessed a booming development in recent years. Since Adachi et al. reported high-performance TADF-OLED devices in 2012, there have been many reports regarding the design and synthesis of new TADF luminogens, which have various molecular structures and are used for different applications. In this review, we summarize and discuss the latest progress concerning this rapidly developing research field, in which the majority of the reported TADF systems are discussed, along with their derived structure–property relationships, TADF mechanisms and applications. We hope that such a review provides a clear outlook of these novel functional materials for a broad range of scientists within different disciplinary areas and attracts more researchers to devote themselves to this interesting research field.

1,566 citations