scispace - formally typeset
Search or ask a question
Author

Leigh T. Canham

Bio: Leigh T. Canham is an academic researcher from University of Birmingham. The author has contributed to research in topics: Porous silicon & Silicon. The author has an hindex of 42, co-authored 160 publications receiving 18268 citations. Previous affiliations of Leigh T. Canham include Defence Research Agency & Defence Science and Technology Laboratory.


Papers
More filters
Journal ArticleDOI
TL;DR: Professor Canham is a scientist who is devoted to finding novel properties and uses for semiconductors that already pervade the authors' everyday lives and has 13 years of experience of start up company management, right through from cofounding with seed venture capital finance to NASDAQ listing.

18 citations

Journal ArticleDOI
TL;DR: The analysis shows that the main mechanism of the modulation is interaction of the MWIR signal with the free charge carrier excited by the pump, which suggests a modulation speed performance of ~15 GHz.
Abstract: We demonstrate for the first time the possibility of all-optical modulation of self-standing porous Silicon (pSi) membrane in the Mid-Wavelength Infrared (MWIR) range using femtosecond pump-probe techniques. To study optical modulation, we used pulses of an 800 nm, 60 femtosecond for pump and a MWIR tunable probe in the spectral range between 3.5 and 4.4 μm. We show that pSi possesses a natural transparency window centred around 4 μm. Yet, about 55% of modulation contrast can be achieved by means of optical excitation at the pump power of 60 mW (4.8 mJ/cm2). Our analysis shows that the main mechanism of the modulation is interaction of the MWIR signal with the free charge carrier excited by the pump. The time-resolved measurements showed a sub-picosecond rise time and a recovery time of about 66 ps, which suggests a modulation speed performance of ~15 GHz. This optical modulation of pSi membrane in MWIR can be applied to a variety of applications such as thermal imaging and free space communications.

18 citations

Journal ArticleDOI
TL;DR: In this article, the first-principles result for the ordering of states at the valence-band maximum is different from the prediction of EMT, and the magnitudes of the conduction-band effective masses for motion along the wire axis increase as the wire thickness decreases, but by much less than predicted by other calculations.
Abstract: Valence- and conduction-band-edge energies and effective masses of hydrogen-terminated silicon wires are calculated using a first-principles pseudopotential method, and the results are compared with effective-mass-theory (EMT) calculations. The first-principles result for the ordering of states at the valence-band maximum is different from the prediction of EMT. The magnitudes of the valence- and conduction-band effective masses for motion along the wire axis increase from their bulk values as the wire thickness decreases, but by much less than predicted by other calculations.

17 citations

Journal ArticleDOI
TL;DR: The controlled release of substances from a semiconducting calcium phosphate/porous Si structure is reported and the effect of bias on the diffusion of the cationic dyes ethidium bromide and acridine orange has been investigated.
Abstract: The controlled release of substances from a semiconducting calcium phosphate/porous Si structure is reported. This is demonstrated principally for the case of the reversible adsorption and release of dyes (such as an anionic salt of fluorescein) upon the switching of the direction of bias to the underlying porous Si/Si substrate. The effect of bias on the diffusion of the cationic dyes ethidium bromide and acridine orange has also been investigated. For these species, their delivery can be mediated in part by the use of a surface layer of the biodegradable polymer poly-caprolactone (PCL).

17 citations

Journal ArticleDOI
01 Mar 2018-Silicon
TL;DR: This paper showed that residual hydride is still likely to be present and only after combining thermal oxidation with surface derivitization can the residual reactivity be reduced to those values typically observed with sol-gel (porous) silica.
Abstract: The chemical reactivity of as-anodized porous silicon is shown to have an adverse effect on a model drug (Lansoprazole) loaded into the pores. The silicon hydride surfaces can cause unwanted reactions with actives during storage or use. Techniques such as thermal oxidation or surface derivitization can lower the reactivity somewhat, by replacing the reactive silicon-hydride species with a more benign oxide or functional group. However, by using a trio of analytical techniques (fluorometric dye assay, HPLC assay, and chemography) we show that residual hydride is still likely to be present and only after combining thermal oxidation with surface derivitization can the residual reactivity be reduced to those values typically observed with sol-gel (porous) silica. Potential sources of residual reactivity are discussed, with reference to data obtained by trace metal analysis, residual solvents, and pH measurements.

17 citations


Cited by
More filters
Journal ArticleDOI
16 Feb 1996-Science
TL;DR: In this article, the authors focus on the properties of quantum dots and their ability to join the dots into complex assemblies creates many opportunities for scientific discovery, such as the ability of joining the dots to complex assemblies.
Abstract: Current research into semiconductor clusters is focused on the properties of quantum dots-fragments of semiconductor consisting of hundreds to many thousands of atoms-with the bulk bonding geometry and with surface states eliminated by enclosure in a material that has a larger band gap. Quantum dots exhibit strongly size-dependent optical and electrical properties. The ability to join the dots into complex assemblies creates many opportunities for scientific discovery.

10,737 citations

Journal ArticleDOI
TL;DR: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency as mentioned in this paper, and many DSC research groups have been established around the world.
Abstract: Dye-sensitized solar cells (DSCs) offer the possibilities to design solar cells with a large flexibility in shape, color, and transparency. DSC research groups have been established around the worl ...

8,707 citations

Journal ArticleDOI
TL;DR: This observation shows that quantum confinement in layered d-electron materials like MoS(2), a prototypical metal dichalcogenide, provides new opportunities for engineering the electronic structure of matter at the nanoscale.
Abstract: Novel physical phenomena can emerge in low-dimensional nanomaterials. Bulk MoS2, a prototypical metal dichalcogenide, is an indirect bandgap semiconductor with negligible photoluminescence. When the MoS2 crystal is thinned to monolayer, however, a strong photoluminescence emerges, indicating an indirect to direct bandgap transition in this d-electron system. This observation shows that quantum confinement in layered d-electron materials like MoS2 provides new opportunities for engineering the electronic structure of matter at the nanoscale.

7,886 citations

Journal ArticleDOI
TL;DR: In this article, the authors present methods of severe plastic deformation and formation of nanostructures, including Torsion straining under high pressure, ECA pressing, and multiple forging.

5,763 citations

Journal ArticleDOI
TL;DR: Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry that can provide essential breakthroughs in the fight against cancer.
Abstract: Nanotechnology is a multidisciplinary field, which covers a vast and diverse array of devices derived from engineering, biology, physics and chemistry. These devices include nanovectors for the targeted delivery of anticancer drugs and imaging contrast agents. Nanowires and nanocantilever arrays are among the leading approaches under development for the early detection of precancerous and malignant lesions from biological fluids. These and other nanodevices can provide essential breakthroughs in the fight against cancer.

4,241 citations