scispace - formally typeset
Search or ask a question
Author

Leland G. Dobbs

Bio: Leland G. Dobbs is an academic researcher from University of California, San Francisco. The author has contributed to research in topics: Lung & Lung injury. The author has an hindex of 38, co-authored 71 publications receiving 5980 citations. Previous affiliations of Leland G. Dobbs include Cardiovascular Institute Hospital.


Papers
More filters
Journal ArticleDOI
TL;DR: Type II cells isolated by "panning" adhered more rapidly and completely in tissue culture than did cells isolate by centrifugation over discontinuous density gradients of metrizamide.
Abstract: A method has been developed for isolating alveolar type II cells by digesting lung tissue with elastase and “panning” the resultant cell suspension on plates coated with IgG. This method provides both high yield and purity of type II cells. In 50 experiments with rats, we obtained 35 ± 11 × 106cells/rat, 89 ± 4% of which were type II cells (mean ± SD). Type II cells isolated by “panning” adhered more rapidly and completely in tissue culture than did cells isolated by centrifugation over discontinuous density gradients of metrizamide. The “panning” method is superior to other methods for isolating type II cells in that it provides a population of type II cells of both high yield and high purity. The method is fast, reproducible, and easily adaptable to isolating type II cells from species other than rats.

601 citations

Journal ArticleDOI
30 Nov 1990-Science
TL;DR: Mechanical factors can trigger complex cellular events in nonneuron, nonmuscle cells and may be involved in regulating normal lung functions by stimulating type II cells to secrete surfactant.
Abstract: Deep inflation of the lung stimulates surfactant secretion by unknown mechanisms. The hypothesis that mechanical distension directly stimulates type II cells to secrete surfactant was tested by stretching type II cells cultured on silastic membranes. The intracellular Ca2+ concentration was measured in single cells, before and after stretching. A single stretch of alveolar type II cells caused a transient (less than 60 seconds) increase in cytosolic Ca2+ followed by a sustained (15 to 30 minutes) stimulation of surfactant secretion. Both Ca2+ mobilization and exocytosis exhibited dose-dependence to the magnitude of the stretch-stimulus. Thus, mechanical factors can trigger complex cellular events in nonneuron, nonmuscle cells and may be involved in regulating normal lung functions.

488 citations

Journal ArticleDOI
TL;DR: It is hypothesized that purified SP-26-36 may act as a ligand to direct surfactant lipids to type II cells, perhaps to different metabolic pathways, and to regulate recycling and surfactants homeostasis.

296 citations

Journal ArticleDOI
TL;DR: It is concluded that low tidal volume ventilation protects both the alveolar epithelium and the endothelium in this model of acute lung injury.
Abstract: Using a rat model of acid-induced lung injury, we tested the hypothesis that tidal volume reduction at the same level of PEEP (10 cm H2O) would diminish the degree of pulmonary edema by attenuating injury to the alveolar epithelial and endothelial barriers. Tidal volume reduction from 12 to 6 to 3 ml/kg significantly reduced the rate of lung water accumulation from 690 μ l/h to 310 μ l/h to 210 μ l/h. Ventilation with either 6 or 3 ml/kg reduced endothelial injury equally as measured by plasma vWf:Ag and permeability to albumin. Plasma RTI40, a marker of type I epithelial cell injury, decreased 46% when tidal volume was reduced from 12 to 6 ml/kg and decreased an additional 33% with 3 ml/kg (p < 0.05). The rate of alveolar epithelial fluid clearance was significantly faster in the 3-ml/kg group (24 ± 7%/h) compared with 6 ml/kg (15 ± 11%/h) and 12 ml/kg (3 ± 6%/h). We conclude that low tidal volume ventilation protects both the alveolar epithelium and the endothelium in this model of acute lung injury. Th...

273 citations

Journal ArticleDOI
TL;DR: TI cells not only contain molecular machinery necessary for active ion transport, but also transport ions, modifying some basic concepts about lung liquid transport and suggesting that TI cells may contribute significantly in maintaining alveolar fluid balance and in resolving airspace edema.
Abstract: Transport of lung liquid is essential for both normal pulmonary physiologic processes and for resolution of pathologic processes. The large internal surface area of the lung is lined by alveolar epithelial type I (TI) and type II (TII) cells; TI cells line >95% of this surface, TII cells <5%. Fluid transport is regulated by ion transport, with water movement following passively. Current concepts are that TII cells are the main sites of ion transport in the lung. TI cells have been thought to provide only passive barrier, rather than active, functions. Because TI cells line most of the internal surface area of the lung, we hypothesized that TI cells could be important in the regulation of lung liquid homeostasis. We measured both Na(+) and K(+) (Rb(+)) transport in TI cells isolated from adult rat lungs and compared the results to those of concomitant experiments with isolated TII cells. TI cells take up Na(+) in an amiloride-inhibitable fashion, suggesting the presence of Na(+) channels; TI cell Na(+) uptake, per microgram of protein, is approximately 2.5 times that of TII cells. Rb(+) uptake in TI cells was approximately 3 times that in TII cells and was inhibited by 10(-4) M ouabain, the latter observation suggesting that TI cells exhibit Na(+)-, K(+)-ATPase activity. By immunocytochemical methods, TI cells contain all three subunits (alpha, beta, and gamma) of the epithelial sodium channel ENaC and two subunits of Na(+)-, K(+)-ATPase. By Western blot analysis, TI cells contain approximately 3 times the amount of alphaENaC/microg protein of TII cells. Taken together, these studies demonstrate that TI cells not only contain molecular machinery necessary for active ion transport, but also transport ions. These results modify some basic concepts about lung liquid transport, suggesting that TI cells may contribute significantly in maintaining alveolar fluid balance and in resolving airspace edema.

258 citations


Cited by
More filters
Journal ArticleDOI
21 May 1993-Science
TL;DR: The results suggest that integrins act as mechanoreceptors and transmit mechanical signals to the cytoskeleton, which may be mediated simultaneously at multiple locations inside the cell through force-induced rearrangements within a tensionally integrated cytos skeleton.
Abstract: Mechanical stresses were applied directly to cell surface receptors with a magnetic twisting device. The extracellular matrix receptor, integrin beta 1, induced focal adhesion formation and supported a force-dependent stiffening response, whereas nonadhesion receptors did not. The cytoskeletal stiffness (ratio of stress to strain) increased in direct proportion to the applied stress and required intact microtubules and intermediate filaments as well as microfilaments. Tensegrity models that incorporate mechanically interdependent struts and strings that reorient globally in response to a localized stress mimicked this response. These results suggest that integrins act as mechanoreceptors and transmit mechanical signals to the cytoskeleton. Mechanotransduction, in turn, may be mediated simultaneously at multiple locations inside the cell through force-induced rearrangements within a tensionally integrated cytoskeleton.

2,899 citations

Journal ArticleDOI
TL;DR: Cell volume may be considered a second message in the transmission of hormonal signals, and alterations of cell volume and volume regulatory mechanisms participate in a wide variety of cellular functions including epithelial transport, metabolism, excitation, hormone release, migration, cell proliferation, and cell death.
Abstract: Lang, Florian, Gillian L. Busch, Markus Ritter, Harald Volkl, Siegfried Waldegger, Erich Gulbins, and Dieter Haussinger. Functional Significance of Cell Volume Regulatory Mechanisms. Physiol. Rev. ...

1,839 citations

Journal ArticleDOI
TL;DR: Progress has been made in understanding the mechanisms responsible for the pathogenesis and the resolution of lung injury, including the contribution of environmental and genetic factors, and on developing novel therapeutics that can facilitate and enhance lung repair.
Abstract: The acute respiratory distress syndrome (ARDS) is an important cause of acute respiratory failure that is often associated with multiple organ failure. Several clinical disorders can precipitate ARDS, including pneumonia, sepsis, aspiration of gastric contents, and major trauma. Physiologically, ARDS is characterized by increased permeability pulmonary edema, severe arterial hypoxemia, and impaired carbon dioxide excretion. Based on both experimental and clinical studies, progress has been made in understanding the mechanisms responsible for the pathogenesis and the resolution of lung injury, including the contribution of environmental and genetic factors. Improved survival has been achieved with the use of lung-protective ventilation. Future progress will depend on developing novel therapeutics that can facilitate and enhance lung repair.

1,506 citations

Journal ArticleDOI
TL;DR: The goal of this review is to summarize the strengths and weaknesses of existing models of lung injury and help guide investigators in the design and interpretation of animal studies of acute lung injury.
Abstract: Acute lung injury in humans is characterized histopathologically by neutrophilic alveolitis, injury of the alveolar epithelium and endothelium, hyaline membrane formation, and microvascular thrombi. Different animal models of experimental lung injury have been used to investigate mechanisms of lung injury. Most are based on reproducing in animals known risk factors for ARDS, such as sepsis, lipid embolism secondary to bone fracture, acid aspiration, ischemia-reperfusion of pulmonary or distal vascular beds, and other clinical risks. However, none of these models fully reproduces the features of human lung injury. The goal of this review is to summarize the strengths and weaknesses of existing models of lung injury. We review the specific features of human ARDS that should be modeled in experimental lung injury and then discuss specific characteristics of animal species that may affect the pulmonary host response to noxious stimuli. We emphasize those models of lung injury that are based on reproducing risk factors for human ARDS in animals and discuss the advantages and disadvantages of each model and the extent to which each model reproduces human ARDS. The present review will help guide investigators in the design and interpretation of animal studies of acute lung injury.

1,453 citations

Journal ArticleDOI
TL;DR: A summary of the GEO database structure and user facilities is provided, and recent enhancements to database design, performance, submission format options, data query and retrieval utilities are described.
Abstract: The Gene Expression Omnibus (GEO) repository at the National Center for Biotechnology Information (NCBI) archives and freely disseminates microarray and other forms of high-throughput data generated by the scientific community. The database has a minimum information about a microarray experiment (MIAME)-compliant infrastructure that captures fully annotated raw and processed data. Several data deposit options and formats are supported, including web forms, spreadsheets, XML and Simple Omnibus Format in Text (SOFT). In addition to data storage, a collection of user-friendly web-based interfaces and applications are available to help users effectively explore, visualize and download the thousands of experiments and tens of millions of gene expression patterns stored in GEO. This paper provides a summary of the GEO database structure and user facilities, and describes recent enhancements to database design, performance, submission format options, data query and retrieval utilities. GEO is accessible at http://www.ncbi.nlm.nih.gov/geo/

1,400 citations