scispace - formally typeset
Search or ask a question
Author

Leland Mayne

Other affiliations: University of Oregon
Bio: Leland Mayne is an academic researcher from University of Pennsylvania. The author has contributed to research in topics: Protein folding & Folding (chemistry). The author has an hindex of 41, co-authored 72 publications receiving 8683 citations. Previous affiliations of Leland Mayne include University of Oregon.


Papers
More filters
Journal ArticleDOI
01 Sep 1993-Proteins
TL;DR: The results provide the information necessary to evaluate measured protein NH to ND exchange rates by comparing them with rates to be expected for the same amino acid sequence is unstructured aligo‐ and polypeptides.
Abstract: The rate of exchange of peptide group NH hydrogens with the hydrogens of aqueous solvent is sensitive to neighboring side chains. To evaluate the effects of protein side chains, all 20 naturally occurring amino acids were studied using dipeptide models. Both inductive and steric blocking effects are apparent. The additivity of nearest-neighbor blocking and inductive effects was tested in oligo- and polypeptides and, surprisingly, confirmed. Reference rates for alanine-containing peptides were determined and effects of temperature considered. These results provide the information necessary to evaluate measured protein NH to ND exchange rates by comparing them with rates to be expected for the same amino acid sequence is unstructured oligo- and polypeptides. The application of this approach to protein studies is discussed.

1,779 citations

Journal ArticleDOI
14 Jul 1995-Science
TL;DR: The partially unfolded forms detected by hydrogen exchange appear to represent the major intermediates in the reversible, dynamic unfolding reactions that occur even at native conditions and thus may define the major pathway for cytochrome c folding.
Abstract: The hydrogen exchange behavior of native cytochrome c in low concentrations of denaturant reveals a sequence of metastable, partially unfolded forms that occupy free energy levels reaching up to the fully unfolded state. The step from one form to another is accomplished by the unfolding of one or more cooperative units of structure. The cooperative units are entire omega loops or mutually stabilizing pairs of whole helices and loops. The partially unfolded forms detected by hydrogen exchange appear to represent the major intermediates in the reversible, dynamic unfolding reactions that occur even at native conditions and thus may define the major pathway for cytochrome c folding.

981 citations

Journal ArticleDOI
TL;DR: Elimination of an interaction which forms in denatured cytochrome c enables the majority of the molecules to fold to the native state on a 15 ms time scale, without populating observable intermediates.
Abstract: Elimination of an interaction which forms in denatured cytochrome c enables the majority of the molecules to fold to the native state on a 15 ms time scale, without populating observable intermediates. These results are contrary to the current view that particular steps in protein folding, including the supposedly rate-limiting molten globule to native transition, are intrinsically slow. Instead it appears that intermediates characterized so far may be kinetically trapped by barriers that are optional rather than integral to the folding process. Major barriers may result from misorganization of the chain in the initial condensation step.

428 citations

Journal ArticleDOI
TL;DR: Recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017) are provided, meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances.
Abstract: Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017). It is meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances.

401 citations

Journal ArticleDOI
TL;DR: A growing number of applications are exploiting hydrogen-exchange behavior to study difficult molecular systems and elicit otherwise inaccessible information on protein structure, dynamics and energetics.

368 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The relative importance of the common main-chain and side-chain interactions in determining the propensities of proteins to aggregate is discussed and some of the evidence that the oligomeric fibril precursors are the primary origins of pathological behavior is described.
Abstract: Peptides or proteins convert under some conditions from their soluble forms into highly ordered fibrillar aggregates. Such transitions can give rise to pathological conditions ranging from neurodegenerative disorders to systemic amyloidoses. In this review, we identify the diseases known to be associated with formation of fibrillar aggregates and the specific peptides and proteins involved in each case. We describe, in addition, that living organisms can take advantage of the inherent ability of proteins to form such structures to generate novel and diverse biological functions. We review recent advances toward the elucidation of the structures of amyloid fibrils and the mechanisms of their formation at a molecular level. Finally, we discuss the relative importance of the common main-chain and side-chain interactions in determining the propensities of proteins to aggregate and describe some of the evidence that the oligomeric fibril precursors are the primary origins of pathological behavior.

5,897 citations

Journal ArticleDOI
01 Mar 1995-Proteins
TL;DR: The work unifies several previously proposed ideas concerning the mechanism protein folding and delimits the regions of validity of these ideas under different thermodynamic conditions.
Abstract: The understanding, and even the description of protein folding is impeded by the complexity of the process. Much of this complexity can be described and understood by taking a statistical approach to the energetics of protein conformation, that is, to the energy landscape. The statistical energy landscape approach explains when and why unique behaviors, such as specific folding pathways, occur in some proteins and more generally explains the distinction between folding processes common to all sequences and those peculiar to individual sequences. This approach also gives new, quantitative insights into the interpretation of experiments and simulations of protein folding thermodynamics and kinetics. Specifically, the picture provides simple explanations for folding as a two-state first-order phase transition, for the origin of metastable collapsed unfolded states and for the curved Arrhenius plots observed in both laboratory experiments and discrete lattice simulations. The relation of these quantitative ideas to folding pathways, to uniexponential vs. multiexponential behavior in protein folding experiments and to the effect of mutations on folding is also discussed. The success of energy landscape ideas in protein structure prediction is also described. The use of the energy landscape approach for analyzing data is illustrated with a quantitative analysis of some recent simulations, and a qualitative analysis of experiments on the folding of three proteins. The work unifies several previously proposed ideas concerning the mechanism protein folding and delimits the regions of validity of these ideas under different thermodynamic conditions. © 1995 Wiley-Liss, Inc.

2,437 citations

Journal ArticleDOI
TL;DR: The general energy landscape picture provides a conceptual framework for understanding both two-state and multi-state folding kinetics and hopes to learn much more about the real shapes of protein folding landscapes.
Abstract: A new view of protein folding kinetics replaces the idea of ‘folding pathways’ with the broader notions of energy landscapes and folding funnels. New experiments are needed to explore them.

2,320 citations

Journal ArticleDOI
TL;DR: It is shown that the full set of hydromagnetic equations admit five more integrals, besides the energy integral, if dissipative processes are absent, which made it possible to formulate a variational principle for the force-free magnetic fields.
Abstract: where A represents the magnetic vector potential, is an integral of the hydromagnetic equations. This -integral made it possible to formulate a variational principle for the force-free magnetic fields. The integral expresses the fact that motions cannot transform a given field in an entirely arbitrary different field, if the conductivity of the medium isconsidered infinite. In this paper we shall show that the full set of hydromagnetic equations admit five more integrals, besides the energy integral, if dissipative processes are absent. These integrals, as we shall presently verify, are I2 =fbHvdV, (2)

1,858 citations

Journal ArticleDOI
TL;DR: This review describes this field of science with particular reference to the advances that have been made over the last decade in understanding of its fundamental nature and consequences and shows evidence that a complex proteostasis network actively combats protein aggregation.
Abstract: Peptides and proteins have been found to possess an inherent tendency to convert from their native functional states into intractable amyloid aggregates. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidoses. In this review, we describe this field of science with particular reference to the advances that have been made over the last decade in our understanding of its fundamental nature and consequences. We list the proteins that are known to be deposited as amyloid or other types of aggregates in human tissues and the disorders with which they are associated, as well as the proteins that exploit the amyloid motif to play specific functional roles in humans. In addition, we summarize the genetic factors that have provided insight into the mechanisms of disease onset. We describe recent advances in our knowledge of the structures of amyloid fibrils and their oligomeric precursors a...

1,727 citations