scispace - formally typeset
Search or ask a question
Author

Lena Elgert

Bio: Lena Elgert is an academic researcher from Hannover Medical School. The author has contributed to research in topics: Telerehabilitation & Rehabilitation. The author has an hindex of 3, co-authored 9 publications receiving 27 citations.

Papers
More filters
Journal ArticleDOI
25 Aug 2020
TL;DR: A holistic approach to enhance adherence to rehabilitation is required supporting patients during the entire rehabilitation process by providing motivational game design elements based on patient-specific characteristics.
Abstract: Background: Gamification has become increasingly important both in research and in practice. Particularly in long-term care processes, such as rehabilitation, playful concepts are gaining in importance to increase motivation and adherence. In addition to neurological diseases, this also affects the treatment of patients with musculoskeletal diseases such as shoulder disorders. Although it would be important to assist patients during more than one rehabilitation phase, it is hypothesized that existing systems only support a single phase. It is also unclear which game design elements are currently used in this context and how they are combined to achieve optimal positive effects on motivation. Objective: This scoping review aims to identify and analyze information and communication technologies that use game design elements to support the rehabilitation processes of patients with musculoskeletal diseases of the shoulder. The state of the art with regard to fields of application, game design elements, and motivation concepts will be determined. Methods: We conducted a scoping review to identify relevant application systems. The search was performed in 3 literature databases: PubMed, IEEE Xplore, and Scopus. Following the PICO (population, intervention, comparison, outcome) framework, keywords and Medical Subject Headings for shoulder, rehabilitation, and gamification were derived to define a suitable search term. Two independent reviewers, a physical therapist and a medical informatician, completed the search as specified by the search strategy. There was no restriction on year of publication. Data synthesis was done by deductive-inductive coding based on qualitative content analysis. Results: A total of 1994 articles were screened; 31 articles in English, published between 2006 and 2019, were included. Within, 27 application systems that support patients with musculoskeletal diseases of the shoulder in exercising, usually at home but also in inpatient or outpatient rehabilitation clinics, were described. Only 2 application systems carried out monitoring of adherence. Almost all were based on in-house developed software. The most frequently used game components were points, tasks, and avatars. More complex game components, such as collections and teams, were rarely used. When selecting game components, patient-specific characteristics, such as age and gender, were only considered in 2 application systems. Most were described as motivating, though an evaluation of motivational effects was usually not conducted. Conclusions: There are only a few application systems supporting patients with musculoskeletal diseases of the shoulder in rehabilitation by using game design elements. Almost all application systems are exergames for supporting self-exercising. Application systems for multiple rehabilitation phases seem to be nonexistent. It is also evident that only a few complex game design elements are used. Patient-specific characteristic are generally neglected when selecting and implementing game components. Consequently, a holistic approach to enhance adherence to rehabilitation is required supporting patients during the entire rehabilitation process by providing motivational game design elements based on patient-specific characteristics.

22 citations

Journal ArticleDOI
19 Mar 2019-Sensors
TL;DR: An approach that automatically detects the execution of the chair rise test via an inertial sensor integrated into a belt and the analysis of the duration of single test cycles indicates a beginning fatigue at the end of the test.
Abstract: An early detection of functional decline with age is important to start interventions at an early state and to prolong the functional fitness. In order to assure such an early detection, functional assessments must be conducted on a frequent and regular basis. Since the five time chair rise test (5CRT) is a well-established test in the geriatric field, this test should be supported by technology. We introduce an approach that automatically detects the execution of the chair rise test via an inertial sensor integrated into a belt. The system’s suitability was evaluated via 20 subjects aged 72–89 years (78.2 ± 4.6 years) and was measured by a stopwatch, the inertial measurement unit (IMU), a Kinect® camera and a force plate. A Multilayer Perceptrons-based classifier detects transitions in the IMU data with an F1-Score of around 94.8%. Valid executions of the 5CRT are detected based on the correct occurrence of sequential movements via a rule-based model. The results of the automatically calculated test durations are in good agreement with the stopwatch measurements (correlation coefficient r = 0.93 (p < 0.001)). The analysis of the duration of single test cycles indicates a beginning fatigue at the end of the test. The comparison of the movement pattern within one person shows similar movement patterns, which differ only slightly in form and duration, whereby different subjects indicate variations regarding their performance strategies.

20 citations

Journal ArticleDOI
TL;DR: The findings show that home-based training with AGT-Reha is feasible and well accepted, and outcomes of SPADI indicate the effectiveness of aftercare withAGT- reha.
Abstract: Background After discharge from a rehabilitation center the continuation of therapy is necessary to secure already achieved healing progress and sustain (re-)integration into working life. To this end, home-based exercise programs are frequently prescribed. However, many patients do not perform their exercises as frequently as prescribed or even with incorrect movements. The telerehabilitation system AGT-Reha was developed to support patients with shoulder diseases during their home-based aftercare rehabilitation. Objectives The presented pilot study AGT-Reha-P2 evaluates the technical feasibility and user acceptance of the home-based telerehabilitation system AGT-Reha. Methods A nonblinded, nonrandomized exploratory feasibility study was conducted over a 2-year period in patients' homes. Twelve patients completed a 3-month telerehabilitation exercise program with AGT-Reha. Primary outcome measures are the satisfying technical functionality and user acceptance assessed by technical parameters, structured interviews, and a four-dimensional questionnaire. Secondary endpoints are the medical rehabilitation success measured by the active range of motion and the shoulder function (pain and disability) assessed by employing the Neutral-0 Method and the standardized questionnaire “Shoulder Pain and Disability Index” (SPADI), respectively. To prepare an efficacy trial, various standardized questionnaires were included in the study to measure ability to work, capacity to work, and subjective prognosis of work capacity. The participants have been assessed at three measurement points: prebaseline (admission to rehabilitation center), baseline (discharge from rehabilitation center), and posttherapy. Results Six participants used the first version of AGT-Reha, while six other patients used an improved version. Despite minor technical problems, all participants successfully trained on their own with AGT-Reha at home. On average, participants trained at least once per day during their training period. Five of the 12 participants showed clinically relevant improvements of shoulder function (improved SPADI score > 11). The work-related parameters suggested a positive impact. All participants would recommend the system, ten participants would likely reuse it, and seven participants would have wanted to continue their use after 3 months. Conclusion The findings show that home-based training with AGT-Reha is feasible and well accepted. Outcomes of SPADI indicate the effectiveness of aftercare with AGT-Reha. A controlled clinical trial to test this hypothesis will be conducted with a larger number of participants.

15 citations

Journal ArticleDOI
04 Feb 2021
TL;DR: There are various HETs, ranging from simple videoconferencing systems to complex sensor-based technologies for telerehabilitation, that assist patients with musculoskeletal shoulder disorders when exercising at home that are not ready for practical use.
Abstract: Background: Health-enabling technologies (HETs) are information and communication technologies that promote individual health and well-being. An important application of HETs is telerehabilitation for patients with musculoskeletal shoulder disorders. Currently, there is no overview of HETs that assist patients with musculoskeletal shoulder disorders when exercising at home. Objective: This scoping review provides a broad overview of HETs that assist patients with musculoskeletal shoulder disorders when exercising at home. It focuses on concepts and components of HETs, exercise program strategies, development phases, and reported outcomes. Methods: The search strategy used Medical Subject Headings and text words related to the terms upper extremity, exercises, and information and communication technologies. The MEDLINE, Embase, IEEE Xplore, CINAHL, PEDro, and Scopus databases were searched. Two reviewers independently screened titles and abstracts and then full texts against predefined inclusion and exclusion criteria. A systematic narrative synthesis was performed. Overall, 8988 records published between 1997 and 2019 were screened. Finally, 70 articles introducing 56 HETs were included. Results: Identified HETs range from simple videoconferencing systems to mobile apps with video instructions to complex sensor-based technologies. Various software, sensor hardware, and hardware for output are in use. The most common hardware for output are PC displays (in 34 HETs). Microsoft Kinect cameras in connection with related software are frequently used as sensor hardware (in 27 HETs). The identified HETs provide direct or indirect instruction, monitoring, correction, assessment, information, or a reminder to exercise. Common parameters for exercise instructions are a patient’s range of motion (in 43 HETs), starting and final position (in 32 HETs), and exercise intensity (in 20 HETs). In total, 48 HETs provide visual instructions for the exercises; 29 HETs report on telerehabilitation aspects; 34 HETs only report on prototypes; and 15 HETs are evaluated for technical feasibility, acceptance, or usability, using different assessment instruments. Efficacy or effectiveness is demonstrated for only 8 HETs. In total, 18 articles report on patients’ evaluations. An interdisciplinary contribution to the development of technologies is found in 17 HETs. Conclusions: There are various HETs, ranging from simple videoconferencing systems to complex sensor-based technologies for telerehabilitation, that assist patients with musculoskeletal shoulder disorders when exercising at home. Most HETs are not ready for practical use. Comparability is complicated by varying prototype status, different measurement instruments, missing telerehabilitation aspects, and few efficacy studies. Consequently, choosing an HET for daily use is difficult for health care professionals and decision makers. Prototype testing, usability, and acceptance tests with the later target group under real-life conditions as well as efficacy or effectiveness studies with patient-relevant core outcomes for every promising HET are required. Furthermore, health care professionals and patients should be more involved in the product design cycle to consider relevant practical aspects.

11 citations

Journal ArticleDOI
TL;DR: In this article, an approach for predicting the score of the Timed Up & Go test and Short-Physical-Performance-Battery assessment using IMU data and deep neural networks is presented.

5 citations


Cited by
More filters
Journal ArticleDOI
25 Apr 2020-Sensors
TL;DR: This work intends to provide a guide to currently proposed sensor systems for in-vehicle monitoring and to answer, in particular, the questions: (1) Which sensors are suitable for in -vehicle data collection?
Abstract: Unobtrusive in-vehicle health monitoring has the potential to use the driving time to perform regular medical check-ups. This work intends to provide a guide to currently proposed sensor systems for in-vehicle monitoring and to answer, in particular, the questions: (1) Which sensors are suitable for in-vehicle data collection? (2) Where should the sensors be placed? (3) Which biosignals or vital signs can be monitored in the vehicle? (4) Which purposes can be supported with the health data? We reviewed retrospective literature systematically and summarized the up-to-date research on leveraging sensor technology for unobtrusive in-vehicle health monitoring. PubMed, IEEE Xplore, and Scopus delivered 959 articles. We firstly screened titles and abstracts for relevance. Thereafter, we assessed the entire articles. Finally, 46 papers were included and analyzed. A guide is provided to the currently proposed sensor systems. Through this guide, potential sensor information can be derived from the biomedical data needed for respective purposes. The suggested locations for the corresponding sensors are also linked. Fifteen types of sensors were found. Driver-centered locations, such as steering wheel, car seat, and windscreen, are frequently used for mounting unobtrusive sensors, through which some typical biosignals like heart rate and respiration rate are measured. To date, most research focuses on sensor technology development, and most application-driven research aims at driving safety. Health-oriented research on the medical use of sensor-derived physiological parameters is still of interest.

63 citations

Journal ArticleDOI
TL;DR: The most prevalent types of game-based interventions in health care research are gamification and serious games, supported by empirical studies showing differences in the effects on specific health behaviors as mentioned in this paper.
Abstract: Background: In health care, the use of game-based interventions to increase motivation, engagement, and overall sustainability of health behaviors is steadily becoming more common. The most prevalent types of game-based interventions in health care research are gamification and serious games. Various researchers have discussed substantial conceptual differences between these 2 concepts, supported by empirical studies showing differences in the effects on specific health behaviors. However, researchers also frequently report cases in which terms related to these 2 concepts are used ambiguously or even interchangeably. It remains unclear to what extent existing health care research explicitly distinguishes between gamification and serious games and whether it draws on existing conceptual considerations to do so. Objective: This study aims to address this lack of knowledge by capturing the current state of conceptualizations of gamification and serious games in health care research. Furthermore, we aim to provide tools for researchers to disambiguate the reporting of game-based interventions. Methods: We used a 2-step research approach. First, we conducted a systematic literature review of 206 studies, published in the Journal of Medical Internet Research and its sister journals, containing terms related to gamification, serious games, or both. We analyzed their conceptualizations of gamification and serious games, as well as the distinctions between the two concepts. Second, based on the literature review findings, we developed a set of guidelines for researchers reporting on game-based interventions and evaluated them with a group of 9 experts from the field. Results: Our results show that less than half of the concept mentions are accompanied by an explicit definition. To distinguish between the 2 concepts, we identified four common approaches: implicit distinction, synonymous use of terms, serious games as a type of gamified system, and distinction based on the full game dimension. Our Game-Based Intervention Reporting Guidelines (GAMING) consist of 25 items grouped into four topics: conceptual focus, contribution, mindfulness about related concepts, and individual concept definitions. Conclusions: Conceptualizations of gamification and serious games in health care literature are strongly heterogeneous, leading to conceptual ambiguity. Following the GAMING can support authors in rigorous reporting on study results of game-based interventions. Trial Registration:

18 citations

Journal ArticleDOI
22 Dec 2020-Sensors
TL;DR: An incremental hybrid machine learning algorithm combining ensemble learning and hybrid stacking using extreme gradient boosted decision trees and k-nearest neighbours to meet individualisation, interpretability, and ART design requirements while maintaining low computation footprint is presented.
Abstract: Socioeconomic reasons post-COVID-19 demand unsupervised home-based rehabilitation and, specifically, artificial ambient intelligence with individualisation to support engagement and motivation. Artificial intelligence must also comply with accountability, responsibility, and transparency (ART) requirements for wider acceptability. This paper presents such a patient-centric individualised home-based rehabilitation support system. To this end, the Timed Up and Go (TUG) and Five Time Sit To Stand (FTSTS) tests evaluate daily living activity performance in the presence or development of comorbidities. We present a method for generating synthetic datasets complementing experimental observations and mitigating bias. We present an incremental hybrid machine learning algorithm combining ensemble learning and hybrid stacking using extreme gradient boosted decision trees and k-nearest neighbours to meet individualisation, interpretability, and ART design requirements while maintaining low computation footprint. The model reaches up to 100% accuracy for both FTSTS and TUG in predicting associated patient medical condition, and 100% or 83.13%, respectively, in predicting area of difficulty in the segments of the test. Our results show an improvement of 5% and 15% for FTSTS and TUG tests, respectively, over previous approaches that use intrusive means of monitoring such as cameras.

17 citations

Journal ArticleDOI
15 May 2020-Sensors
TL;DR: The article introduces the Unsupervised Screening System (USS) for unsupervised self-assessments by older adults and evaluates its validity for the TUG and SST and found it was a validated and reliable tool.
Abstract: Comprehensive and repetitive assessments are needed to detect physical changes in an older population to prevent functional decline at the earliest possible stage and to initiate preventive interventions. Established instruments like the Timed "Up & Go" (TUG) Test and the Sit-to-Stand Test (SST) require a trained person (e.g., physiotherapist) to assess physical performance. More often, these tests are only applied to a selected group of persons already functionally impaired and not to those who are at potential risk of functional decline. The article introduces the Unsupervised Screening System (USS) for unsupervised self-assessments by older adults and evaluates its validity for the TUG and SST. The USS included ambient and wearable movement sensors to measure the user's test performance. Sensor datasets of the USS's light barriers and Inertial Measurement Units (IMU) were analyzed for 91 users aged 73 to 89 years compared to conventional stopwatch measurement. A significant correlation coefficient of 0.89 for the TUG test and of 0.73 for the SST were confirmed among USS's light barriers. Correspondingly, for the inertial data-based measures, a high and significant correlation of 0.78 for the TUG test and of 0.87 for SST were also found. The USS was a validated and reliable tool to assess TUG and SST.

16 citations

Journal ArticleDOI
TL;DR: In this paper , the results of a fully remote digital care program (DCP) for chronic shoulder pain were presented, which was associated with clinically significant improvement in all health-related outcomes, as well as marked productivity recovery.
Abstract: Chronic shoulder pain (SP) is responsible for significant morbidity, decreased quality of life and impaired work ability, resulting in high socioeconomic burden. Successful SP management is dependent on adherence and compliance with effective evidence-based interventions. Digital solutions may improve accessibility to such treatments, increasing convenience, while reducing healthcare-related costs.Present the results of a fully remote digital care program (DCP) for chronic SP.Interventional, single-arm, cohort study of individuals with chronic SP applying for a digital care program. Primary outcome was the mean change between baseline and 12 weeks on the Quick Disabilities of the Arm, Shoulder and Hand (QuickDASH) questionnaire. Secondary outcomes were change in pain (NPRS), analgesic consumption, intention to undergo surgery, anxiety (GAD-7), depression (PHQ-9), fear-avoidance beliefs (FABQ-PA), work productivity (WPAI) and engagement.From 296 patients at program start, 234 (79.1%) completed the intervention. Changes in QuickDASH between baseline and end-of-program were both statistically (p < 0.001) and clinically significant, with a mean reduction of 51.6% (mean -13.45 points, 95% CI: 11.99; 14.92). Marked reductions were also observed in all secondary outcomes: 54.8% in NPRS, 44.1% ceased analgesics consumption, 55.5% in surgery intent, 37.7% in FABQ-PA, 50.3% in anxiety, 63.6% in depression and 66.5% in WPAI overall. Higher engagement was associated with higher improvements in disability. Mean patient satisfaction score was 8.7/10.0 (SD 1.6).This is the first real-world cohort study reporting the results of a multimodal remote digital approach for chronic SP rehabilitation. High completion and engagement rates were observed, which were associated with clinically significant improvement in all health-related outcomes, as well as marked productivity recovery. These promising results support the potential of digital modalities to address the global burden of chronic musculoskeletal pain.

15 citations