scispace - formally typeset
Search or ask a question
Author

Lena Kieckens

Bio: Lena Kieckens is an academic researcher from Katholieke Universiteit Leuven. The author has contributed to research in topics: Plasminogen activator & T-plasminogen activator. The author has an hindex of 4, co-authored 4 publications receiving 5495 citations.

Papers
More filters
Journal ArticleDOI
04 Apr 1996-Nature
TL;DR: It is reported that formation of blood vessels was abnormal, but not abolished, in heterozygous VEGF-deficient (VEGF+/-) embryos, generated by aggregation of embryonic stem (ES) cells with tetraploid embryos (T-ES)16,17, and even more impaired in homozygous D1-VEGF- deficient (VDGF-/-) T-ES embryos, resulting in death at mid-gestation.
Abstract: The endothelial cell-specific vascular endothelial growth factor (VEGF) and its cellular receptors Flt-1 and Flk-1 have been implicated in the formation of the embryonic vasculature. This is suggested by their colocalized expression during embryogenesis and the impaired vessel formation in Flk-1 and Flt-1 deficient embryos. However, because Flt-1 also binds placental growth factor, a VEGF homologue, the precise role of VEGF was unknown. Here we report that formation of blood vessels was abnormal, but not abolished, in heterozygous VEGF-deficient (VEGF+/-) embryos, generated by aggregation of embryonic stem (ES) cells with tetraploid embryos (T-ES) and even more impaired in homozygous VEGF-deficient (VEGF-/-) T-ES embryos, resulting in death at mid-gestation. Similar phenotypes were observed in F1-VEGF+/- embryos, generated by germline transmission. We believe that this heterozygous lethal phenotype, which differs from the homozygous lethality in VEGF-receptor-deficient embryos, is unprecedented for a targeted autosomal gene inactivation, and is indicative of a tight dose-dependent regulation of embryonic vessel development by VEGF.

4,216 citations

Journal ArticleDOI
31 Mar 1994-Nature
TL;DR: Direct evidence suggests a crucial role for the fibrinolytic system and its physiological triggers, tissue-type and urokinase-type (u-PA) plasminogen activator, in many proteolytic processes.
Abstract: Indirect evidence suggests a crucial role for the fibrinolytic system and its physiological triggers, tissue-type (t-PA) and urokinase-type (u-PA) plasminogen activator, in many proteolytic processes. Inactivation of the t-PA gene impairs clot lysis and inactivation of the u-PA gene results in occasional fibrin deposition. Mice with combined t-PA and u-PA deficiency suffer extensive spontaneous fibrin deposition, with its associated effects on growth, fertility and survival.

1,042 citations

Journal ArticleDOI
TL;DR: Homozygous plasminogen activator inhibitor-1 (PAI-1)-deficient mice were generated by homologous recombination in D3 embryonic stem cells and showed no apparent macroscopic or microscopic histological abnormalities.
Abstract: Homozygous plasminogen activator inhibitor-1 (PAI-1)-deficient (PAI-1-/-) mice were generated by homologous recombination in D3 embryonic stem cells. Deletion of the genomic sequences encompassing the transcription initiation site and the entire coding regions of murine PAI-1 was demonstrated by Southern blot analysis. A 3.0-kb PAI-1-specific mRNA was identified by Northern blot analysis in liver from PAI-1 wild type (PAI-1+/+) but not from PAI-1-/- mice. Plasma PAI-1 levels, measured 2-4 h after endotoxin (2.0 mg/kg) injection were 63 +/- 2 ng/ml, 30 +/- 10 ng/ml, and undetectable (< 2 ng/ml) in PAI-1+/+, heterozygous (PAI-1+/-) and PAI-1-/- mice, respectively (mean +/- SEM, n = 4-11). PAI-1-specific immunoreactivity was demonstrable in kidneys of PAI-1+/+ but not of PAI-1-/- mice. SDS-gel electrophoresis of plasma incubated with 125I-labeled recombinant human tissue-type plasminogen activator revealed an approximately 115,000-M(r) component with plasma from endotoxin-stimulated (0.5 mg/kg) PAI-1+/+ but not from PAI-1-/- mice, which could be precipitated with a polyclonal anti-PAI-1 antiserum. PAI-1-/- mice were viable, produced similar sizes of litters as PAI-1+/+ mice, and showed no apparent macroscopic or microscopic histological abnormalities.

335 citations

01 Jan 1993
TL;DR: Homozygous plasminogen activator inhibitor-i (PAI-1) mice were generated by homologous recombi- nation in D3 embryonic stem cells andletion of the genomic sequences encompassing the transcription initiation site and the entire coding regions ofmurine PAI-i was demonstrated by Southern blot analysis.
Abstract: Homozygous plasminogen activator inhibitor-i (PAI-1 )-defi- cient (PAI-1 /-I) mice were generated by homologous recombi- nation in D3 embryonic stem cells. Deletion of the genomic sequences encompassing the transcription initiation site and the entire coding regions ofmurine PAI-i was demonstrated by Southern blot analysis. A 3.0-kb PAI-i-specific mRNA was identified by Northern blot analysis in liver from PAI-1 wild type (PAI-i +1+) but not from PAI-1i-- mice. Plasma PAI-i levels, measured 2-4 h after endotoxin (2.0 mg/kg) injection were 63±2 ng/ml, 30±10 ng/ml, and undetectable (< 2 ng/ ml) in PAl-i++, heterozygous (PA-i +/-) and PAMl-/- mice, respectively (mean±SEM, n = 4-11). PAI-1-specific immunoreactivity was demonstrable in kidneys of PAI-1 +/+ but not of PAl-i-- mice. SDS-gel electrophoresis of plasma incubated with '25I-labeled recombinant human tissue-type plasminogen activator revealed an 115,000-M, component with plasma from endotoxin-stimulated (0.5 mg/kg)PA-i +/+ but not from PAM- -/- mice, which could be precipitated with a polyclonal anti-PAI-1 antiserum. PAM-i- mice were viable, produced similar sizes of litters as PA- +/+ mice, and showed noapparent macroscopic ormicroscopic histological abnormali-

12 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Vascular endothelial growth factor (VEGF) is a key regulator of physiological angiogenesis during embryogenesis, skeletal growth and reproductive functions and is implicated in pathologicalAngiogenesis associated with tumors, intraocular neovascular disorders and other conditions.
Abstract: Vascular endothelial growth factor (VEGF) is a key regulator of physiological angiogenesis during embryogenesis, skeletal growth and reproductive functions. VEGF has also been implicated in pathological angiogenesis associated with tumors, intraocular neovascular disorders and other conditions. The biological effects of VEGF are mediated by two receptor tyrosine kinases (RTKs), VEGFR-1 and VEGFR-2, which differ considerably in signaling properties. Non-signaling co-receptors also modulate VEGF RTK signaling. Currently, several VEGF inhibitors are undergoing clinical testing in several malignancies. VEGF inhibition is also being tested as a strategy for the prevention of angiogenesis, vascular leakage and visual loss in age-related macular degeneration.

8,942 citations

Journal ArticleDOI
14 Sep 2000-Nature
TL;DR: Pathological angiogenesis is a hallmark of cancer and various ischaemic and inflammatory diseases and integrated understanding is leading to the development of a number of exciting and bold approaches to treat cancer and other diseases, but owing to several unanswered questions, caution is needed.
Abstract: Pathological angiogenesis is a hallmark of cancer and various ischaemic and inflammatory diseases Concentrated efforts in this area of research are leading to the discovery of a growing number of pro- and anti-angiogenic molecules, some of which are already in clinical trials The complex interactions among these molecules and how they affect vascular structure and function in different environments are now beginning to be elucidated This integrated understanding is leading to the development of a number of exciting and bold approaches to treat cancer and other diseases But owing to several unanswered questions, caution is needed

8,561 citations

Journal ArticleDOI
Werner Risau1
17 Apr 1997-Nature
TL;DR: Understanding of the molecular basis underlying angiogenesis, particularly from the study of mice lacking some of the signalling systems involved, has greatly improved, and may suggest new approaches for treating conditions such as cancer that depend onAngiogenesis.
Abstract: After the developing embryo has formed a primary vascular plexus by a process termed vasculogenesis, further blood vessels are generated by both sprouting and non-sprouting angiogenesis, which are progressively pruned and remodelled into a functional adult circulatory system. Recent results, particularly from the study of mice lacking some of the signalling systems involved, have greatly improved our understanding of the molecular basis underlying these events, and may suggest new approaches for treating conditions such as cancer that depend on angiogenesis.

5,793 citations

Journal ArticleDOI
TL;DR: The establishment of a vascular supply is required for organ development and differentiation as well as for tissue repair and reproductive functions in the adult.
Abstract: The establishment of a vascular supply is required for organ development and differentiation as well as for tissue repair and reproductive functions in the adult1 Neovascularization (angiogenesis) is also implicated in the pathogenesis of a number of disorders These include: proliferative retinopathies, age-related macular degeneration, tumors, rheumatoid arthritis, and psoriasis1,2 A strong correlation has been noted between density of microvessels in primary breast cancers and their nodal metastases and patient survival3 Similarly, a correlation has been reported between vascularity and invasive behavior in several other tumors4–6

4,603 citations

Journal ArticleDOI
04 Apr 1996-Nature
TL;DR: It is reported that formation of blood vessels was abnormal, but not abolished, in heterozygous VEGF-deficient (VEGF+/-) embryos, generated by aggregation of embryonic stem (ES) cells with tetraploid embryos (T-ES)16,17, and even more impaired in homozygous D1-VEGF- deficient (VDGF-/-) T-ES embryos, resulting in death at mid-gestation.
Abstract: The endothelial cell-specific vascular endothelial growth factor (VEGF) and its cellular receptors Flt-1 and Flk-1 have been implicated in the formation of the embryonic vasculature. This is suggested by their colocalized expression during embryogenesis and the impaired vessel formation in Flk-1 and Flt-1 deficient embryos. However, because Flt-1 also binds placental growth factor, a VEGF homologue, the precise role of VEGF was unknown. Here we report that formation of blood vessels was abnormal, but not abolished, in heterozygous VEGF-deficient (VEGF+/-) embryos, generated by aggregation of embryonic stem (ES) cells with tetraploid embryos (T-ES) and even more impaired in homozygous VEGF-deficient (VEGF-/-) T-ES embryos, resulting in death at mid-gestation. Similar phenotypes were observed in F1-VEGF+/- embryos, generated by germline transmission. We believe that this heterozygous lethal phenotype, which differs from the homozygous lethality in VEGF-receptor-deficient embryos, is unprecedented for a targeted autosomal gene inactivation, and is indicative of a tight dose-dependent regulation of embryonic vessel development by VEGF.

4,216 citations