scispace - formally typeset
Search or ask a question
Author

Lena M. Napolitano

Bio: Lena M. Napolitano is an academic researcher from University of Michigan. The author has contributed to research in topics: ARDS & Intensive care. The author has an hindex of 62, co-authored 297 publications receiving 17573 citations. Previous affiliations of Lena M. Napolitano include United States Department of Veterans Affairs & Veterans Health Administration.


Papers
More filters
Journal ArticleDOI
TL;DR: These guidelines are intended for use by healthcare professionals who care for patients at risk for hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), including specialists in infectious diseases, pulmonary diseases, critical care, and surgeons, anesthesiologists, hospitalists, and any clinicians and healthcare providers caring for hospitalized patients with nosocomial pneumonia.
Abstract: It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.These guidelines are intended for use by healthcare professionals who care for patients at risk for hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), including specialists in infectious diseases, pulmonary diseases, critical care, and surgeons, anesthesiologists, hospitalists, and any clinicians and healthcare providers caring for hospitalized patients with nosocomial pneumonia. The panel's recommendations for the diagnosis and treatment of HAP and VAP are based upon evidence derived from topic-specific systematic literature reviews.

2,359 citations

Journal ArticleDOI
TL;DR: These guidelines offer basic recommendations that are supported by review and analysis of the current literature, other national and international guidelines, and a blend of expert opinion and clinical practicality that are directed toward generalized patient populations.
Abstract: A.S.P.E.N. and SCCM are both nonprofit organizations composed of multidisciplinary healthcare professionals. The mission of A.S.P.E.N. is to improve patient care by advancing the science and practice of clinical nutrition and metabolism. The mission of SCCM is to secure the highest quality care for all critically ill and injured patients. Guideline Limitations: These A.S.P.E.N.−SCCM Clinical Guidelines are based on general conclusions of health professionals who, in developing such guidelines, have balanced potential benefits to be derived from a particular mode of medical therapy against certain risks inherent with such therapy. However, practice guidelines are not intended as absolute requirements. The use of these practice guidelines does not in any way project or guarantee any specific benefit in outcome or survival. The judgment of the healthcare professional based on individual circumstances of the patient must always take precedence over the recommendations in these guidelines. The guidelines offer basic recommendations that are supported by review and analysis of the current literature, other national and international guidelines, and a blend of expert opinion and clinical practicality. The population of critically ill patients in an intensive care unit (ICU) is not homogeneous. Many of the studies on which the guidelines are based are limited by sample size, patient heterogeneity, variability in disease severity, lack of baseline nutritional status, and insufficient statistical power for analysis. Periodic Guideline Review and Update: This particular report is an update and expansion of guidelines published by A.S.P.E.N. and SCCM in 2009 (1). Governing bodies of both A.S.P.E.N. and SCCM have mandated that these guidelines be updated every three to five years. The database of randomized controlled trials (RCTs) that served as the platform for the analysis of the literature was assembled in a joint “harmonization process” with the Canadian Clinical Guidelines group. Once completed, each group operated separately in their interpretation of the studies and derivation of guideline recommendations (2). The current A.S.P.E.N. and SCCM guidelines included in this paper were derived from data obtained via literature searches by the authors through December 31, 2013. Although the committee was aware of landmark studies published after this date, these data were not included in this manuscript. The process by which the literature was evaluated necessitated a common end date for the search review. Adding a last-minute landmark trial would have introduced bias unless a formalized literature search was re-conducted for all sections of the manuscript. Target Patient Population for Guideline: The target of these guidelines is intended to be the adult (≥ 18 years) critically ill patient expected to require a length of stay (LOS) greater than 2 or 3 days in a medical ICU (MICU) or surgical ICU (SICU). The current guidelines were expanded to include a number of additional subsets of patients who met the above criteria, but were not included in the previous 2009 guidelines. Specific patient populations addressed by these expanded and updated guidelines include organ failure (pulmonary, renal, and liver), acute pancreatitis, surgical subsets (trauma, traumatic brain injury [TBI], open abdomen [OA], and burns), sepsis, postoperative major surgery, chronic critically ill, and critically ill obese. These guidelines are directed toward generalized patient populations but, like any other management strategy in the ICU, nutrition therapy should be tailored to the individual patient. Target Audience: The intended use of these guidelines is for all healthcare providers involved in nutrition therapy of the critically ill, primarily physicians, nurses, dietitians, and pharmacists. Methodology: The authors compiled clinical questions reflecting key management issues in nutrition therapy. A committee of multidisciplinary experts in clinical nutrition composed of physicians, nurses, pharmacists, and dietitians was jointly convened by the two societies.

1,734 citations

Journal ArticleDOI
TL;DR: These guidelines were developed jointly by the American Society of Health-System Pharmacists (ASHP), the Infectious Diseases Society of America, the Surgical Infection Society (SIS), and the Society for Healthcare Epidemiology of America (SHEA).
Abstract: These guidelines were developed jointly by the American Society of Health-System Pharmacists (ASHP), the Infectious Diseases Society of America (IDSA), the Surgical Infection Society (SIS), and the Society for Healthcare Epidemiology of America (SHEA). This work represents an update to the

1,691 citations

Journal ArticleDOI
TL;DR: The guidelines were developed jointly by the American Society of Health-System Pharmacists (ASHP), the Infectious Diseases Society of America (IDSA), the Surgical Infection Society (SIS), and the Society for Healthcare Epidemiology (SHEA) as mentioned in this paper.
Abstract: These guidelines were developed jointly by the American Society of Health-System Pharmacists (ASHP), the Infectious Diseases Society of America (IDSA), the Surgical Infection Society (SIS), and the Society for Healthcare Epidemiology of America (SHEA). This work represents an update to the

1,074 citations

Journal ArticleDOI
TL;DR: Blood transfusion is confirmed as an independent predictor of mortality, intensive care unit (ICU) admission, ICU LOS, and hospital LOS in trauma after controlling for severity of shock by admission base deficit, lactate, shock index, and anemia.
Abstract: Background: We have previously shown that blood transfusion in the first 24 hours is an independent predictor of mortality, intensive care unit (ICU) admission, and increased ICU length of stay in the acute trauma setting when controlling for Injury Severity Score, Glasgow Coma Scale score, and age. Indices of shock such as base deficit, serum lactate level, and admission hemodynamic status (systolic blood pressure, heart rate) and admission hematocrit were considered potential confounding variables in that study. The objectives of this study were to evaluate admission anemia and blood transfusion within the first 24 hours as independent predictors of mortality, ICU admission, ICU length of stay (LOS), and hospital LOS, with serum lactate level, base deficit, and shock index (heart rate/ systolic blood pressure) as covariates. Methods: Prospective data were collected on 15,534 patients admitted to a Level I trauma center over a 3-year period (1998-2000) and stratified by age, gender, race, Glasgow Coma Scale score, and Injury Severity Score. Admission anemia and blood transfusion were assessed as independent predictors of mortality, ICU admission, ICU LOS, and hospital LOS by logistic regression analysis, with base deficit, serum lactate, and shock index as covariates. Results: Blood transfusion was a strong independent predictor of mortality (odds ratio [OR], 2.83; 95% confidence interval [CI], 1.82-4.40; p < 0.001), ICU admission (OR, 3.27; 95% CI, 2.69-3.99; p < 0.001), ICU LOS (p < 0.001), and hospital LOS (Coef, 4.37; 95% CI, 2.79-5.94; p < 0.001) when stratified by indices of shock (base deficit, serum lactate, shock index, and anemia). Patients who underwent blood transfusion were almost three times more likely to die and greater than three times more likely to be admitted to the ICU. Admission anemia (hematocrit < 36%) was an independent predictor of ICU admission (p = 0.008), ICU LOS (p = 0.012), and hospital LOS (p < 0.001). Conclusion: Blood transfusion is confirmed as an independent predictor of mortality, ICU admission, ICU LOS, and hospital LOS in trauma after controlling for severity of shock by admission base deficit, lactate, shock index, and anemia. The use of other hemoglobin-based oxygen-carrying resuscitation fluids (such as human or bovine hemoglobin substitutes) in the acute postinjury period warrants further investigation.

607 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death, including older age, high SOFA score and d-dimer greater than 1 μg/mL.

20,189 citations

Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations

01 Feb 2009
TL;DR: This Secret History documentary follows experts as they pick through the evidence and reveal why the plague killed on such a scale, and what might be coming next.
Abstract: Secret History: Return of the Black Death Channel 4, 7-8pm In 1348 the Black Death swept through London, killing people within days of the appearance of their first symptoms. Exactly how many died, and why, has long been a mystery. This Secret History documentary follows experts as they pick through the evidence and reveal why the plague killed on such a scale. And they ask, what might be coming next?

5,234 citations

01 Jan 2020
TL;DR: Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future.
Abstract: Summary Background Since December, 2019, Wuhan, China, has experienced an outbreak of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Epidemiological and clinical characteristics of patients with COVID-19 have been reported but risk factors for mortality and a detailed clinical course of illness, including viral shedding, have not been well described. Methods In this retrospective, multicentre cohort study, we included all adult inpatients (≥18 years old) with laboratory-confirmed COVID-19 from Jinyintan Hospital and Wuhan Pulmonary Hospital (Wuhan, China) who had been discharged or had died by Jan 31, 2020. Demographic, clinical, treatment, and laboratory data, including serial samples for viral RNA detection, were extracted from electronic medical records and compared between survivors and non-survivors. We used univariable and multivariable logistic regression methods to explore the risk factors associated with in-hospital death. Findings 191 patients (135 from Jinyintan Hospital and 56 from Wuhan Pulmonary Hospital) were included in this study, of whom 137 were discharged and 54 died in hospital. 91 (48%) patients had a comorbidity, with hypertension being the most common (58 [30%] patients), followed by diabetes (36 [19%] patients) and coronary heart disease (15 [8%] patients). Multivariable regression showed increasing odds of in-hospital death associated with older age (odds ratio 1·10, 95% CI 1·03–1·17, per year increase; p=0·0043), higher Sequential Organ Failure Assessment (SOFA) score (5·65, 2·61–12·23; p Interpretation The potential risk factors of older age, high SOFA score, and d-dimer greater than 1 μg/mL could help clinicians to identify patients with poor prognosis at an early stage. Prolonged viral shedding provides the rationale for a strategy of isolation of infected patients and optimal antiviral interventions in the future. Funding Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences; National Science Grant for Distinguished Young Scholars; National Key Research and Development Program of China; The Beijing Science and Technology Project; and Major Projects of National Science and Technology on New Drug Creation and Development.

4,408 citations