scispace - formally typeset
Search or ask a question
Author

Lennart Bergström

Bio: Lennart Bergström is an academic researcher from Stockholm University. The author has contributed to research in topics: Nanocellulose & Cellulose. The author has an hindex of 57, co-authored 229 publications receiving 12806 citations. Previous affiliations of Lennart Bergström include Royal Institute of Technology & Luleå University of Technology.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a review of the applicability of the N-P representation for the analysis of the lifshitz Hamaker constants in the ultraviolet spectral region is presented. But the authors do not consider the non-retarded Hamaker constant for water, which is not true for all materials, e.g. water.

1,023 citations

Journal ArticleDOI
TL;DR: This work shows that freeze-casting suspensions of cellulose nanofibres, graphene oxide and sepiolite nanorods produces super-insulating, fire-retardant and strong anisotropic foams that perform better than traditional polymer-based insulating materials.
Abstract: High-performance thermally insulating materials from renewable resources are needed to improve the energy efficiency of buildings. Traditional fossil-fuel-derived insulation materials such as expan ...

1,009 citations

Journal ArticleDOI
TL;DR: The cellulose nanocrystals (CNCs), produced by the acid hydrolysis of wood, cotton or other cellulose-rich sources, constitute a renewable nanosized raw material with a broad range of envisaged uses as discussed by the authors.
Abstract: Cellulose nanocrystals (CNCs), produced by the acid hydrolysis of wood, cotton or other cellulose-rich sources, constitute a renewable nanosized raw material with a broad range of envisaged uses: f ...

721 citations

Journal ArticleDOI
TL;DR: In this review, classical nucleation theory, as well as established concepts of spinodal decomposition and liquid-liquid demixing, is introduced together with a description of the recently proposed pre-nucleation cluster pathway.
Abstract: Crystallisation is at the heart of various scientific disciplines, but still the understanding of the molecular mechanisms underlying phase separation and the formation of the first solid particles in aqueous solution is rather limited. In this review, classical nucleation theory, as well as established concepts of spinodal decomposition and liquid–liquid demixing, is introduced together with a description of the recently proposed pre-nucleation cluster pathway. The features of pre-nucleation clusters are presented and discussed in relation to recent modifications of the classical and established models for phase separation, together with a review of experimental work and computer simulations on the characteristics of pre-nucleation clusters of calcium phosphate, calcium carbonate, iron(oxy)(hydr)oxide, silica, and also amino acids as an example of small organic molecules. The role of pre-nucleation clusters as solute precursors in the emergence of a new phase is summarized, and the link between the chemical speciation of homogeneous solutions and the process of phase separation via pre-nucleation clusters is highlighted.

704 citations

Journal ArticleDOI
TL;DR: In this article, the fundamental principles for green body formation are discussed; a distinction is made between physical and chemical gels based on the nature of the induced gelation; and an overview of the properties of dense suspensions is presented, with a focus on the factors controlling the maximum solids loading.
Abstract: Novel approaches for optimized powder processing of advanced ceramics are reviewed with an emphasis on direct-casting methods and solid freeform fabrication techniques. The fundamental principles for green body formation are discussed; a distinction is made between physical and chemical gels based on the nature of the induced gelation. An overview of the properties of dense suspensions is presented, with a focus on the factors controlling the maximum solids loading. Recent work on direct measurements of interparticle forces in ceramic systems is presented and related to rheological properties.

427 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The atomic force microscope (AFM) is not only used to image the topography of solid surfaces at high resolution but also to measure force-versus-distance curves as discussed by the authors, which provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities.

3,281 citations

Journal ArticleDOI
TL;DR: In this paper, the authors compare the behavior observed in systems containing either particles or surfactant molecules in the areas of adsorption to interfaces, partitioning between phases and solid-stabilised emulsions and foams.
Abstract: Colloidal particles act in many ways like surfactant molecules, particularly if adsorbed to a fluid–fluid interface. Just as the water or oil-liking tendency of a surfactant is quantified in terms of the hydrophile–lipophile balance (HLB) number, so can that of a spherical particle be described in terms of its wettability via contact angle. Important differences exist, however, between the two types of surface-active material, due in part to the fact that particles are strongly held at interfaces. This review attempts to correlate the behaviour observed in systems containing either particles or surfactant molecules in the areas of adsorption to interfaces, partitioning between phases and solid-stabilised emulsions and foams.

3,202 citations

Journal Article
TL;DR: This volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of the instrument and its ancillary tools are simply and well presented.
Abstract: I read this book the same weekend that the Packers took on the Rams, and the experience of the latter event, obviously, colored my judgment. Although I abhor anything that smacks of being a handbook (like, \"How to Earn a Merit Badge in Neurosurgery\") because too many volumes in biomedical science already evince a boyscout-like approach, I must confess that parts of this volume are fast, scholarly, and significant, with certain reservations. I like parts of this well-illustrated book because Dr. Sj6strand, without so stating, develops certain subjects on technique in relation to the acquisition of judgment and sophistication. And this is important! So, given that the author (like all of us) is somewhat deficient in some areas, and biased in others, the book is still valuable if the uninitiated reader swallows it in a general fashion, realizing full well that what will be required from the reader is a modulation to fit his vision, propreception, adaptation and response, and the kind of problem he is undertaking. A major deficiency of this book is revealed by comparison of its use of physics and of chemistry to provide understanding and background for the application of high resolution electron microscopy to problems in biology. Since the volume is keyed to high resolution electron microscopy, which is a sophisticated form of structural analysis, but really morphology in a modern guise, the physical and mechanical background of The instrument and its ancillary tools are simply and well presented. The potential use of chemical or cytochemical information as it relates to biological fine structure , however, is quite deficient. I wonder when even sophisticated morphol-ogists will consider fixation a reaction and not a technique; only then will the fundamentals become self-evident and predictable and this sine qua flon will become less mystical. Staining reactions (the most inadequate chapter) ought to be something more than a technique to selectively enhance contrast of morphological elements; it ought to give the structural addresses of some of the chemical residents of cell components. Is it pertinent that auto-radiography gets singled out for more complete coverage than other significant aspects of cytochemistry by a high resolution microscopist, when it has a built-in minimal error of 1,000 A in standard practice? I don't mean to blind-side (in strict football terminology) Dr. Sj6strand's efforts for what is \"routinely used in our laboratory\"; what is done is usually well done. It's just that …

3,197 citations