scispace - formally typeset
Search or ask a question
Author

Leonard A. Barrie

Bio: Leonard A. Barrie is an academic researcher from World Meteorological Organization. The author has contributed to research in topics: Arctic & Aerosol. The author has an hindex of 74, co-authored 177 publications receiving 17356 citations. Previous affiliations of Leonard A. Barrie include University of Toronto & The Cyprus Institute.


Papers
More filters
Journal ArticleDOI
14 Jul 1988-Nature
TL;DR: In this paper, the authors focus on recent ground-level observations from the Canadian baseline station at Alert (82.5° N, 62.3° W) and from aircraft that show that ozone destruction is occurring under the Arctic surface radiation inversion during March and April as the Sun rises.
Abstract: There is increasing evidence that at polar sunrise sunlight-induced changes in the composition of the lower Arctic atmosphere (0–2 km) are taking place that are important regarding the tropospheric cycles of ozone, bromine, sulphur oxides1, nitrogen oxides2 and possibly iodine3. Here we focus on recent ground-level observations from the Canadian baseline station at Alert (82.5° N, 62.3° W) and from aircraft that show that ozone destruction is occurring under the Arctic surface radiation inversion during March and April as the Sun rises. The destruction might be linked to catalytic reactions of BrOx radicals and the photochemistry of bromoform, which appears to have a biological origin in the Arctic Ocean. This may clarify previously unexplained regular springtime occurrences of ozone depletion at ground level in a 10-year data record at Barrow, Alaska4, as well as peaks in aerosol bromine observed throughout the Arctic in March and April3. Current information does not allow us to offer more than a speculative explanation for the chemical mechanisms leading to these phenomena.

939 citations

Journal ArticleDOI
23 Jul 1998-Nature
TL;DR: In this paper, the authors show that during the spring (April to early June) of 1995, there were frequent episodic depletions in mercury vapour concentrations in Arctic surface air.
Abstract: The Arctic ecosystem is showing increasing evidence of contamination by persistent, toxic substances, including metals such as mercury1, that accumulate in organisms. In January 1995, we began continuous surface-level measurements of total gaseous mercury in the air at Alert, Northwest Territories, Canada (82.5° N, 62.5° W). Here we show that, during the spring (April to early June) of 1995, there were frequent episodic depletions in mercury vapour concentrations, strongly resembling depletions of ozone in Arctic surface air, during the three-month period following polar sunrise (which occurs in March)2,3.

671 citations

Journal ArticleDOI
TL;DR: New knowledge developed under the NCP on the sources, occurrence and pathways of contaminants (organochlorines, Hg, Pb and Cd, PAHs, artificial radionuclides) are highlighted and compelling evidence for close connectivity between the global emission of contaminants from industrial and agricultural activities and the Arctic is provided.

656 citations

Journal ArticleDOI
TL;DR: In this paper, an estimate of the mean vertical profile of fine particle aerosol mass during March and April shows that, on average, pollution is concentrated in the lower 5 km of the atmosphere.

654 citations

Journal ArticleDOI
TL;DR: It is concluded that both the atmosphere and the ocean are important transport media for potentially toxic organic compounds in the northern polar region and even for the HCH substances, which are relatively easily measured and simple in composition compared to other synthetic organics.

622 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the climate system and its dynamics, including observed climate variability and change, the carbon cycle, atmospheric chemistry and greenhouse gases, and their direct and indirect effects.
Abstract: Summary for policymakers Technical summary 1. The climate system - an overview 2. Observed climate variability and change 3. The carbon cycle and atmospheric CO2 4. Atmospheric chemistry and greenhouse gases 5. Aerosols, their direct and indirect effects 6. Radiative forcing of climate change 7. Physical climate processes and feedbacks 8. Model evaluation 9. Projections of future climate change 10. Regional climate simulation - evaluation and projections 11. Changes in sea level 12. Detection of climate change and attribution of causes 13. Climate scenario development 14. Advancing our understanding Glossary Index Appendix.

13,366 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Abstract: Black carbon aerosol plays a unique and important role in Earth's climate system. Black carbon is a type of carbonaceous material with a unique combination of physical properties. This assessment provides an evaluation of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice. These effects are calculated with climate models, but when possible, they are evaluated with both microphysical measurements and field observations. Predominant sources are combustion related, namely, fossil fuels for transportation, solid fuels for industrial and residential uses, and open burning of biomass. Total global emissions of black carbon using bottom-up inventory methods are 7500 Gg yr−1 in the year 2000 with an uncertainty range of 2000 to 29000. However, global atmospheric absorption attributable to black carbon is too low in many models and should be increased by a factor of almost 3. After this scaling, the best estimate for the industrial-era (1750 to 2005) direct radiative forcing of atmospheric black carbon is +0.71 W m−2 with 90% uncertainty bounds of (+0.08, +1.27) W m−2. Total direct forcing by all black carbon sources, without subtracting the preindustrial background, is estimated as +0.88 (+0.17, +1.48) W m−2. Direct radiative forcing alone does not capture important rapid adjustment mechanisms. A framework is described and used for quantifying climate forcings, including rapid adjustments. The best estimate of industrial-era climate forcing of black carbon through all forcing mechanisms, including clouds and cryosphere forcing, is +1.1 W m−2 with 90% uncertainty bounds of +0.17 to +2.1 W m−2. Thus, there is a very high probability that black carbon emissions, independent of co-emitted species, have a positive forcing and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W m−2, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (−0.50 to +1.08) W m−2 during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (−0.06 W m−2 with 90% uncertainty bounds of −1.45 to +1.29 W m−2). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future climate forcing estimates.

4,591 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations

Book ChapterDOI
01 Jan 2014
TL;DR: Myhre et al. as discussed by the authors presented the contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) 2013: Anthropogenic and Natural Radiative forcing.
Abstract: This chapter should be cited as: Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura and H. Zhang, 2013: Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. Coordinating Lead Authors: Gunnar Myhre (Norway), Drew Shindell (USA)

3,684 citations