scispace - formally typeset
Search or ask a question
Author

Leonard J. Barbour

Bio: Leonard J. Barbour is an academic researcher from Stellenbosch University. The author has contributed to research in topics: Supramolecular chemistry & van der Waals force. The author has an hindex of 51, co-authored 245 publications receiving 13579 citations. Previous affiliations of Leonard J. Barbour include Brigham Young University & University of Missouri.


Papers
More filters
Journal ArticleDOI
TL;DR: X-Seed as mentioned in this paper is a software tool for X-ray crystallographers and runs under any of the 32-bit Microsoft Windows operating systems including 95, 98, Millennium Edition, 2000 and XP.

2,490 citations

Journal ArticleDOI
01 Jun 1998-Nature
TL;DR: In this paper, the preparation and crystal structure of a three-dimensional supramolecular complex that is stabilized by an intricate array of non-covalent interactions involving contributions from solvent water clusters, most notably a water decamer ((H2O) with an ice-like molecular arrangement.
Abstract: Chemical self-assembly is the process by which ‘programmed’ molecular subunits spontaneously form complex supramolecular frameworks1,2. This approach has been applied to many model systems, in which hydrogen bonds3,4, metal–ligand coordination5 or other non-covalent interactions6 typically control the self-assembly process. In biology, self-assembly is generally dynamic and depends on the cooperation of many such non-covalent interactions. Water can play an important role in these biological self-assembly processes, for example by stabilizing the native conformation of biopolymers7,8,9. Hydrogen-bonded (H2O)n clusters10,11 can play an important role in stabilizing some supramolecular species, both natural and synthetic, in aqueous solution. Here we report the preparation and crystal structure of a self-assembled, three-dimensional supramolecular complex that is stabilized by an intricate array of non-covalent interactions involving contributions from solvent water clusters, most notably a water decamer ((H2O)10) with an ice-like molecular arrangement. These findings show that the degree of structuring that can be imposed on water by its surroundings, and vice versa, can be profound.

497 citations

Journal ArticleDOI
13 Aug 1999-Science
TL;DR: Crystallographic studies revealed how metal ion coordination and substrate recognition direct the formation of these supramolecular assemblies, and the addition of greater amounts of pyridine N-oxide changed the curvature of the assembling surface and resulted in theformation of extended tubules.
Abstract: Amphiphilic polyhedron-shaped p-sulfonatocalix[4]arene building blocks, which have been previously shown to assemble into bilayers in an antiparallel fashion, have been assembled in a parallel alignment into spherical and helical tubular structures by the addition of pyridine N-oxide and lanthanide ions Crystallographic studies revealed how metal ion coordination and substrate recognition direct the formation of these supramolecular assemblies The addition of greater amounts of pyridine N-oxide changed the curvature of the assembling surface and resulted in the formation of extended tubules

490 citations

Journal ArticleDOI
01 Nov 2002-Science
TL;DR: It is demonstrated here that even weak dispersive forces can exert a profound influence over solid-state dynamics.
Abstract: A well-known organic host compound undergoes single-crystal-to-single-crystal phase transitions upon guest uptake and release. Despite a lack of porosity of the material, guest transport through the solid occurs readily until a thermodynamically stable structure is achieved. In order to actively facilitate this dynamic process, the host molecules undergo significant positional and/or orientational rearrangement. This transformation of the host lattice is triggered by weak van der Waals interactions between the molecular components. In order for the material to maintain its macroscopic integrity, extensive cooperativity must exist between the molecules throughout the crystal, such that rearrangement can occur in a well-orchestrated fashion. We demonstrate here that even weak dispersive forces can exert a profound influence over solid-state dynamics.

477 citations

Journal ArticleDOI
TL;DR: These materials show potential for gas separation technology, display remarkable water transport through hydrophobic crystals, and clearly show that molecules within crystals are capable of cooperating with guests as they move through non-porous environments.
Abstract: Seemingly non-porous organic solids have the ability for guest transport and have also been shown to absorb gases, including hydrogen, methane and acetylene, to varied extents. These materials also show potential for gas separation technology, display remarkable water transport through hydrophobic crystals, and clearly show that molecules within crystals are capable of cooperating with guests as they move through non-porous environments. This work is presented within a broader topic which also encompasses crystal engineering and (microporous) metal-organic frameworks (MOF's).

411 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long
Abstract: Kenji Sumida, David L. Rogow, Jarad A. Mason, Thomas M. McDonald, Eric D. Bloch, Zoey R. Herm, Tae-Hyun Bae, Jeffrey R. Long

5,389 citations

Journal ArticleDOI
TL;DR: The hydrogen bond is the most important of all directional intermolecular interactions, operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological.
Abstract: The hydrogen bond is the most important of all directional intermolecular interactions. It is operative in determining molecular conformation, molecular aggregation, and the function of a vast number of chemical systems ranging from inorganic to biological. Research into hydrogen bonds experienced a stagnant period in the 1980s, but re-opened around 1990, and has been in rapid development since then. In terms of modern concepts, the hydrogen bond is understood as a very broad phenomenon, and it is accepted that there are open borders to other effects. There are dozens of different types of X-H.A hydrogen bonds that occur commonly in the condensed phases, and in addition there are innumerable less common ones. Dissociation energies span more than two orders of magnitude (about 0.2-40 kcal mol(-1)). Within this range, the nature of the interaction is not constant, but its electrostatic, covalent, and dispersion contributions vary in their relative weights. The hydrogen bond has broad transition regions that merge continuously with the covalent bond, the van der Waals interaction, the ionic interaction, and also the cation-pi interaction. All hydrogen bonds can be considered as incipient proton transfer reactions, and for strong hydrogen bonds, this reaction can be in a very advanced state. In this review, a coherent survey is given on all these matters.

5,153 citations

Journal ArticleDOI
TL;DR: In this paper, the development in the field of coordination polymers or metal-organic coordination networks, MOCNs (metal-organic frameworks, MOFs) is assessed in terms of property investigations in the areas of catalysis, chirality, conductivity, luminescence, magnetism, spin-transition (spin-crossover), nonlinear optics (NLO) and porosity or zeolitic behavior upon which potential applications could be based.
Abstract: The development in the field of coordination polymers or metal-organic coordination networks, MOCNs (metal-organic frameworks, MOFs) is assessed in terms of property investigations in the areas of catalysis, chirality, conductivity, luminescence, magnetism, spin-transition (spin-crossover), non-linear optics (NLO) and porosity or zeolitic behavior upon which potential applications could be based.

3,117 citations