scispace - formally typeset
Search or ask a question
Author

Leonardo de Moura

Bio: Leonardo de Moura is an academic researcher from Microsoft. The author has contributed to research in topics: Satisfiability modulo theories & Automated theorem proving. The author has an hindex of 42, co-authored 95 publications receiving 13498 citations. Previous affiliations of Leonardo de Moura include Stanford University & SRI International.


Papers
More filters
Book ChapterDOI
29 Mar 2008
TL;DR: Z3 is a new and efficient SMT Solver freely available from Microsoft Research that is used in various software verification and analysis applications.
Abstract: Satisfiability Modulo Theories (SMT) problem is a decision problem for logical first order formulas with respect to combinations of background theories such as: arithmetic, bit-vectors, arrays, and uninterpreted functions. Z3 is a new and efficient SMT Solver freely available from Microsoft Research. It is used in various software verification and analysis applications.

6,859 citations

Proceedings ArticleDOI
16 Mar 1998
TL;DR: The paper presents simple and practical methods for detecting exact and near miss clones over arbitrary program fragments in program source code by using abstract syntax trees and suggests that clone detection could be useful in producing more structured code, and in reverse engineering to discover domain concepts and their implementations.
Abstract: Existing research suggests that a considerable fraction (5-10%) of the source code of large scale computer programs is duplicate code ("clones"). Detection and removal of such clones promises decreased software maintenance costs of possibly the same magnitude. Previous work was limited to detection of either near misses differing only in single lexems, or near misses only between complete functions. The paper presents simple and practical methods for detecting exact and near miss clones over arbitrary program fragments in program source code by using abstract syntax trees. Previous work also did not suggest practical means for removing detected clones. Since our methods operate in terms of the program structure, clones could be removed by mechanical methods producing in-lined procedures or standard preprocessor macros. A tool using these techniques is applied to a C production software system of some 400 K source lines, and the results confirm detected levels of duplication found by previous work. The tool produces macro bodies needed for clone removal, and macro invocations to replace the clones. The tool uses a variation of the well known compiler method for detecting common sub expressions. This method determines exact tree matches; a number of adjustments are needed to detect equivalent statement sequences, commutative operands, and nearly exact matches. We additionally suggest that clone detection could also be useful in producing more structured code, and in reverse engineering to discover domain concepts and their implementations.

1,197 citations

01 Jan 2006
TL;DR: Yices is an efficient SMT solver developed at SRI International that supports a rich combination of first-order theories that occur frequently in software and hardware modeling: arithmetic, uninterpreted functions, bit vectors, arrays, recursive datatypes, and more.
Abstract: SMT stands for Satisfiability Modulo Theories. An SMT solver decides the satisfiability of propositionally complex formulas in theories such as arithmetic and uninterpreted functions with equality. SMT solving has numerous applications in automated theorem proving, in hardware and software verification, and in scheduling and planning problems. This paper describes Yices, an efficient SMT solver developed at SRI International. Yices supports a rich combination of first-order theories that occur frequently in software and hardware modeling: arithmetic, uninterpreted functions, bit vectors, arrays, recursive datatypes, and more. Beyond pure SMT solving, Yices can solve weighted MAX-SMT problems, compute unsatisfiable cores, and construct models. Yices is the main decision procedure used by the SAL model checking environment, and it is being integrated to the PVS theorem prover. As a MAX-SMT solver, Yices is the main component of the probabilistic consistency engine used in SRI’s CALO system.

684 citations

Journal Article
TL;DR: In this paper, a Simplex-based linear arithmetic solver that can be integrated efficiently in the DPLL(T) framework is presented. But this solver does not support a priori simplification to reduce the problem size, and provides an efficient form of theory propagation.
Abstract: We present a new Simplex-based linear arithmetic solver that can be integrated efficiently in the DPLL(T) framework. The new solver improves over existing approaches by enabling fast backtracking, supporting a priori simplification to reduce the problem size, and providing an efficient form of theory propagation. We also present a new and simple approach for solving strict inequalities. Experimental results show substantial performance improvements over existing tools that use other Simplex-based solvers in DPLL(T) decision procedures. The new solver is even competitive with state-of-the-art tools specialized for the difference logic fragment.

632 citations

Book ChapterDOI
17 Aug 2006
TL;DR: A new Simplex-based linear arithmetic solver that can be integrated efficiently in the DPLL(T) framework by enabling fast backtracking, supporting a priori simplification to reduce the problem size, and providing an efficient form of theory propagation.
Abstract: We present a new Simplex-based linear arithmetic solver that can be integrated efficiently in the DPLL(T) framework. The new solver improves over existing approaches by enabling fast backtracking, supporting a priori simplification to reduce the problem size, and providing an efficient form of theory propagation. We also present a new and simple approach for solving strict inequalities. Experimental results show substantial performance improvements over existing tools that use other Simplex-based solvers in DPLL(T) decision procedures. The new solver is even competitive with state-of-the-art tools specialized for the difference logic fragment.

625 citations


Cited by
More filters
Book ChapterDOI
29 Mar 2008
TL;DR: Z3 is a new and efficient SMT Solver freely available from Microsoft Research that is used in various software verification and analysis applications.
Abstract: Satisfiability Modulo Theories (SMT) problem is a decision problem for logical first order formulas with respect to combinations of background theories such as: arithmetic, bit-vectors, arrays, and uninterpreted functions. Z3 is a new and efficient SMT Solver freely available from Microsoft Research. It is used in various software verification and analysis applications.

6,859 citations

Posted Content
TL;DR: A detailed review over existing graph neural network models is provided, systematically categorize the applications, and four open problems for future research are proposed.
Abstract: Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics systems, learning molecular fingerprints, predicting protein interface, and classifying diseases demand a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures (like the dependency trees of sentences and the scene graphs of images) is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are neural models that capture the dependence of graphs via message passing between the nodes of graphs. In recent years, variants of GNNs such as graph convolutional network (GCN), graph attention network (GAT), graph recurrent network (GRN) have demonstrated ground-breaking performances on many deep learning tasks. In this survey, we propose a general design pipeline for GNN models and discuss the variants of each component, systematically categorize the applications, and propose four open problems for future research.

2,494 citations

Posted Content
TL;DR: It is argued that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective.
Abstract: Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the natural strengths of deep learning. However, many defining characteristics of human intelligence, which developed under much different pressures, remain out of reach for current approaches. In particular, generalizing beyond one's experiences--a hallmark of human intelligence from infancy--remains a formidable challenge for modern AI. The following is part position paper, part review, and part unification. We argue that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective. Just as biology uses nature and nurture cooperatively, we reject the false choice between "hand-engineering" and "end-to-end" learning, and instead advocate for an approach which benefits from their complementary strengths. We explore how using relational inductive biases within deep learning architectures can facilitate learning about entities, relations, and rules for composing them. We present a new building block for the AI toolkit with a strong relational inductive bias--the graph network--which generalizes and extends various approaches for neural networks that operate on graphs, and provides a straightforward interface for manipulating structured knowledge and producing structured behaviors. We discuss how graph networks can support relational reasoning and combinatorial generalization, laying the foundation for more sophisticated, interpretable, and flexible patterns of reasoning. As a companion to this paper, we have released an open-source software library for building graph networks, with demonstrations of how to use them in practice.

2,170 citations

Journal ArticleDOI
TL;DR: A new clone detection technique, which consists of the transformation of input source text and a token-by-token comparison, is proposed, which has effectively found clones and the metrics have been able to effectively identify the characteristics of the systems.
Abstract: A code clone is a code portion in source files that is identical or similar to another. Since code clones are believed to reduce the maintainability of software, several code clone detection techniques and tools have been proposed. This paper proposes a new clone detection technique, which consists of the transformation of input source text and a token-by-token comparison. For its implementation with several useful optimization techniques, we have developed a tool, named CCFinder (Code Clone Finder), which extracts code clones in C, C++, Java, COBOL and other source files. In addition, metrics for the code clones have been developed. In order to evaluate the usefulness of CCFinder and metrics, we conducted several case studies where we applied the new tool to the source code of JDK, FreeBSD, NetBSD, Linux, and many other systems. As a result, CCFinder has effectively found clones and the metrics have been able to effectively identify the characteristics of the systems. In addition, we have compared the proposed technique with other clone detection techniques.

1,700 citations

01 Jan 2009
TL;DR: This paper presents a meta-modelling framework for modeling and testing the robustness of the modeled systems and some of the techniques used in this framework have been developed and tested in the field.
Abstract: ing WS1S Systems to Verify Parameterized Networks . . . . . . . . . . . . 188 Kai Baukus, Saddek Bensalem, Yassine Lakhnech and Karsten Stahl FMona: A Tool for Expressing Validation Techniques over Infinite State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 J.-P. Bodeveix and M. Filali Transitive Closures of Regular Relations for Verifying Infinite-State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Bengt Jonsson and Marcus Nilsson Diagnostic and Test Generation Using Static Analysis to Improve Automatic Test Generation . . . . . . . . . . . . . 235 Marius Bozga, Jean-Claude Fernandez and Lucian Ghirvu Efficient Diagnostic Generation for Boolean Equation Systems . . . . . . . . . . . . 251 Radu Mateescu Efficient Model-Checking Compositional State Space Generation with Partial Order Reductions for Asynchronous Communicating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Jean-Pierre Krimm and Laurent Mounier Checking for CFFD-Preorder with Tester Processes . . . . . . . . . . . . . . . . . . . . . . . 283 Juhana Helovuo and Antti Valmari Fair Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Thomas A. Henzinger and Sriram K. Rajamani Integrating Low Level Symmetries into Reachability Analysis . . . . . . . . . . . . . 315 Karsten Schmidt Model-Checking Tools Model Checking Support for the ASM High-Level Language . . . . . . . . . . . . . . 331 Giuseppe Del Castillo and Kirsten Winter Table of

1,687 citations