scispace - formally typeset
Search or ask a question
Author

Leonardo Mata

Other affiliations: James Cook University
Bio: Leonardo Mata is an academic researcher from University of the Algarve. The author has contributed to research in topics: Asparagopsis armata & Asparagopsis taxiformis. The author has an hindex of 20, co-authored 36 publications receiving 1147 citations. Previous affiliations of Leonardo Mata include James Cook University.

Papers
More filters
Journal ArticleDOI
TL;DR: This article systematically analysed the literature to assess the approaches and methods of protein determination and to provide an evidence-based conversion factor for nitrogen to protein that is specific to seaweeds.
Abstract: A global drive to source additional and sustainable biomass for the production of protein has resulted in a renewed interest in the protein content of seaweeds. However, to determine accurately the potential of seaweeds as a source of protein requires reliable quantitative methods. This article systematically analysed the literature to assess the approaches and methods of protein determination and to provide an evidence-based conversion factor for nitrogen to protein that is specific to seaweeds. Almost 95 % of studies on seaweeds determined protein either by direct extraction procedures (42 % of all studies) or by applying an indirect nitrogen-to-protein conversion factor of 6.25 (52 % of all studies), with the latter as the most widely used method in the last 6 years. Meta-analysis of the true protein content, defined as the sum of the proteomic amino acids, demonstrated that direct extraction procedures underestimated protein content by 33 %, while the most commonly used indirect nitrogen-to-protein conversion factor of 6.25 over-estimated protein content by 43 %. We therefore determined whether a single nitrogen-to-protein conversion factor could be used for seaweeds and evaluated how robust this would be by analysing the variation in this factor for 103 species across 44 studies that span three phyla, multiple geographic regions and a range of nitrogen contents. An overall median nitrogen-to-protein conversion factor of 4.97 was established and an overall mean nitrogen-to-protein conversion factor of 4.76. We propose that the overall median value of 5 be used as the most accurate universal seaweed nitrogen-to-protein (SNP) conversion factor.

250 citations

Journal ArticleDOI
15 Oct 2013-PLOS ONE
TL;DR: The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to target for bioremediation activities at land-based aquaculture facilities in Eastern Australia and there was no clearly identifiable competitive strain of filamentous Ulva.
Abstract: The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day(-1) respectively) across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2-20.4% day(-1)) and Sydney strains had the lowest growth rates (2.5-8.3% day(-1)). We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to target for bioremediation activities at land-based aquaculture facilities in Eastern Australia.

129 citations

Journal ArticleDOI
TL;DR: Both green seaweeds Derbesia tenuissima and Ulva ohnoi are potential bioresources for the extraction of proteins (amino acids) and offer niche opportunities to deliver multiple products through a biorefinery process.
Abstract: The green seaweeds Derbesia tenuissima and Ulva ohnoi were assessed comparatively for yields of biomass and bioproducts (fatty acids, soluble fibres and amino acids) under controlled land-based culture over 6 months. The intensive cultivation of these seaweeds yielded an average biomass productivity of 15 g dry weight (dw) m−2 day−1 (56 t dw ha−1 year−1) for D. tenuissima and 38 g dw m−2 day−1 (138 t dw ha−1 year−1) for U. ohnoi. The production of D. tenuissima was comparatively consistent, ranging between 8 and 20 g dw m−2 day−1, while that of U. ohnoi was highly variable and stochastic, ranging between 16 and 77 g dw m−2 day−1. The major bioproducts were lipids (13 % dw) and fatty acids (5 % dw) for D. tenuissima and soluble fibres (ulvan, 12 % dw) for U. ohnoi. These concentrations were consistent over time, irrespective of the variation in environmental conditions and biomass productivity. In addition, D. tenuissima and U. ohnoi are potential bioresources for the extraction of proteins (amino acids). The amino acid content of D. tenuissima (24 % dw) was higher than that of U. ohnoi (13 % dw). However, the annual amino acid productivity of U. ohnoi (18 t ha−1 year−1) was higher than that of D. tenuissima (14 t ha−1 year−1) due to the higher annual productivity of biomass. Notably, both species offer niche opportunities to deliver multiple products through a biorefinery process.

110 citations

Journal ArticleDOI
TL;DR: This study confirmed that A. armata is indeed a more efficient biofilter than U. rigida, and the production rates reported here are the highest ever reported for macroalgae cultivated in tanks.
Abstract: The tetrasporophyte of Asparagopsis armata has been previously established as a novel seaweed biofilter for integrated land-based mariculture. The species growth and biofiltration rates were much higher than the values described in the literature for Ulva spp., the most common seaweed biofilter. However, a validation of the advantage of one species over the other requires a study of the performances of these two species in the same system at the same time. In this work, we compared the biofiltration performance and biomass yield of A. armata and Ulva rigida cultivated in the effluents of a fish farm in southern Portugal. Comparisons were performed at different water renewal rates and in two seasons of the year. The maximum total ammonia nitrogen (TAN) removal rates were similar for both species in December (2.7 and 2.8 g TAN m–2 day–1 for U. rigida and A. armata, respectively) and higher for A. armata (6.5 g TAN m–2 day–1) than for U. rigida (5.1 g TAN m–2 day–1) in May. Higher differences were observed when estimating the nitrogen biofiltration through the organic nitrogen yield (N yield) of the biomass produced, particularly in May. This estimate is directly related with the biomass yield and the N content in the tissue which were always higher for A. armata than for U. rigida. In December, the maximum biomass yields were 71 g dry weight (DW) m–2 day–1 for A. armata and 44 g DW m–2 day–1 for U. rigida, while in May, the yield of A. armata was 125 g DW m–2 day–1 and of U. rigida was 73 g DW m–2 day–1. This study confirmed that A. armata is indeed a more efficient biofilter than U. rigida. To the best of our knowledge, the production rates reported here are the highest ever reported for macroalgae cultivated in tanks.

96 citations

Journal ArticleDOI
TL;DR: Results revealed that A. armata is currently the seaweed-biofilter with the highest TAN removal at a TAN flux of about 500 μmol 1 -1 h -1, and has the potential to turn biofiltration into an economically sustained, beneficial side effect.

69 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work highlights this rapidly advancing area of algal science with a particular focus on the key research required to assess better the health benefits of an alga or algal product.
Abstract: Global demand for macroalgal and microalgal foods is growing, and algae are increasingly being consumed for functional benefits beyond the traditional considerations of nutrition and health. There is substantial evidence for the health benefits of algal-derived food products, but there remain considerable challenges in quantifying these benefits, as well as possible adverse effects. First, there is a limited understanding of nutritional composition across algal species, geographical regions, and seasons, all of which can substantially affect their dietary value. The second issue is quantifying which fractions of algal foods are bioavailable to humans, and which factors influence how food constituents are released, ranging from food preparation through genetic differentiation in the gut microbiome. Third is understanding how algal nutritional and functional constituents interact in human metabolism. Superimposed considerations are the effects of harvesting, storage, and food processing techniques that can dramatically influence the potential nutritive value of algal-derived foods. We highlight this rapidly advancing area of algal science with a particular focus on the key research required to assess better the health benefits of an alga or algal product. There are rich opportunities for phycologists in this emerging field, requiring exciting new experimental and collaborative approaches.

933 citations

15 Feb 2016
TL;DR: Standard methods for the examination of water and wastewater: including bottom sediments and sludges, standard methods for examining water, including bottom sediment and sludge, are described in this paper.
Abstract: Standard methods for the examination of water and wastewater: including bottom sediments and sludges , Standard methods for the examination of water and wastewater: including bottom sediments and sludges , مرکز فناوری اطلاعات و اطلاع رسانی کشاورزی

613 citations

Journal ArticleDOI
TL;DR: The studies carried out on the use of plant products on fish aquaculture and their biological effects on fish such as growth promoter, immunostimulant, antibacterial and anti-parasitic are reviewed.

609 citations

Journal ArticleDOI
TL;DR: Kanevakis*, Inger Wallentinus, Argyro Zenetos, Erkki Leppakoski, Melih Ertan Cinar, Bayram Ozturk, Michal Grabowski, Daniel Golani and Ana Cristina Cardoso European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Ispra, Italy Department of Biological and Environmental Sciences, University of Gothenburg, Sweden Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Ag.
Abstract: Stelios Katsanevakis*, Inger Wallentinus, Argyro Zenetos, Erkki Leppakoski, Melih Ertan Cinar, Bayram Ozturk, Michal Grabowski, Daniel Golani and Ana Cristina Cardoso European Commission, Joint Research Centre (JRC), Institute for Environment and Sustainability (IES), Ispra, Italy Department of Biological and Environmental Sciences, University of Gothenburg, Sweden Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, Ag. Kosmas, Greece Department of Biosciences, Environmental and Marine Biology, Abo Akademi University, Turku, Finland Ege University, Faculty of Fisheries, Department of Hydrobiology, Bornova, Izmir, Turkey Faculty of Fisheries, Marine Biology Laboratory, University of Istanbul, Istanbul, Turkey Department of Invertebrate Zoology & Hydrobiology, University of Lodz, Poland Department of Ecology, Evolution and Behavior and the National Natural History Collections, The Hebrew University of Jerusalem, Israel

489 citations

Journal ArticleDOI
TL;DR: The taxonomic, ecological and chemical diversity between, and within, different algal groups and the implications for commercial utilisation of algae from natural populations are outlined and the biochemical diversity and complexity of commercially important types of compounds and their environmental and developmental control are addressed.

450 citations