scispace - formally typeset
Search or ask a question
Author

Leonid Veniaminovich Keldysh

Other affiliations: Lebedev Physical Institute
Bio: Leonid Veniaminovich Keldysh is an academic researcher from Russian Academy of Sciences. The author has contributed to research in topics: Exciton & Polariton. The author has an hindex of 13, co-authored 61 publications receiving 3600 citations. Previous affiliations of Leonid Veniaminovich Keldysh include Lebedev Physical Institute.


Papers
More filters
Proceedings ArticleDOI
09 Feb 2006
TL;DR: In this article, a planar cavity quantum electrodynamics (cQED) system based on a low density In0.3Ga 0.7As quantum layer placed as the active layer in a high quality planar AlAs/GaAs distributed Bragg reflector cavity grown by molecular beam epitaxy is described.
Abstract: Properties of atom-like emitters in cavities are successfully described by cavity quantum electrodynamics (cQED). We report on cavity quantum electrodynamics (cQED) experiments in a single quantum dot semiconductor system. CQED, which is a very active research field in optics and solid state physics, can be divided into a weak and a strong coupling regime. In case of weak coupling, the spontaneous emission rate of an atom-like emitter, e.g. a single quantum dot exciton, can be enhanced or reduced compared to the value in vacuum in an irreversible emission process. In contrast, a reversible energy exchange between the emitter and the cavity mode takes place when the conditions for strong coupling are fulfilled. We investigate weak as well as strong coupling in a system based on a low density In0.3Ga 0.7As quantum dot layer placed as the active layer in a high quality planar AlAs/GaAs distributed Bragg reflector cavity grown by molecular beam epitaxy. Using electron beam lithography and deep plasma etching, micropillars with high Q-factors (up to 43.000 for 4 μm diameter) were realized from the planar cavity structure. Due to the high oscillator strength of the In0.3Ga 0.7As quantum dots together with a small mode volume in high finesse micropillar cavities it is possible to observe strong coupling characterized by a vacuum Rabi splitting of 140 μeV. The fabrication of high-Q micropillar cavities as well as conditions necessary to realize strong coupling in the present system are discussed in detail.

321 citations

01 Sep 1968
TL;DR: In this article, conditions for the Bose condensation of excitons are investigated and it is shown that low-density system of exciton behaves like a weakly nonideal Bose-gas.
Abstract: The problem of exciton interaction in semiconductors is considered in its multi-electron formulation. Expressions are obtained, in the approximation linear in the concentration, for the ground-state energy and for the law of dispersion of elementary excitations. Conditions for the Bose condensation of excitons are investigated and it is shown that low-density system of excitons behaves like a weakly nonideal Bose-gas. Furthermore, all quantities (the chemical potential, the rate of collective excitations) that depend on the two-particle scattering amplitude in the nonideal Bose-gas case are expressed in our analysis by the same formulas through the four-fermion interaction amplitude (two electrons and two holes) which includes, apart from the two-exciton scattering amplitude, the scattering amplitudes of two and three fermions as well as the terms connected with the Pauli statistics for the electrons and holes, and resulting from the fact that excitons are compound particles. These terms yield an essential positive contribution to the exciton scattering amplitude and may in principle ensure the stability of the ground Bose-condensed state even if there is a weak attraction between the excitons.

138 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties are reviewed.
Abstract: The electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties are reviewed. Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.

2,612 citations

Journal ArticleDOI
28 Sep 2006-Nature
TL;DR: A comprehensive set of experiments giving compelling evidence for BEC of polaritons of bosonic quasi-particles are detailed, which indicate the spontaneous onset of a macroscopic quantum phase.
Abstract: Phase transitions to quantum condensed phases—such as Bose–Einstein condensation (BEC), superfluidity, and superconductivity—have long fascinated scientists, as they bring pure quantum effects to a macroscopic scale. BEC has, for example, famously been demonstrated in dilute atom gas of rubidium atoms at temperatures below 200 nanokelvin. Much effort has been devoted to finding a solid-state system in which BEC can take place. Promising candidate systems are semiconductor microcavities, in which photons are confined and strongly coupled to electronic excitations, leading to the creation of exciton polaritons. These bosonic quasi-particles are 109 times lighter than rubidium atoms, thus theoretically permitting BEC to occur at standard cryogenic temperatures. Here we detail a comprehensive set of experiments giving compelling evidence for BEC of polaritons. Above a critical density, we observe massive occupation of the ground state developing from a polariton gas at thermal equilibrium at 19 K, an increase of temporal coherence, and the build-up of long-range spatial coherence and linear polarization, all of which indicate the spontaneous onset of a macroscopic quantum phase. Bose–Einstein condensation (BEC), a form of matter first postulated in 1924, has famously been demonstrated in dilute atomic gases at ultra-low temperatures. Much effort is now being devoted to exploring solid-state systems in which BEC can occur. In theory semiconductor microcavities, where photons are confined and coupled to electronic excitations leading to the creation of polaritons, could allow BEC at standard cryogenic temperatures. Kasprzak et al. now present experiments in which polaritons are excited in such a microcavity. Above a critical polariton density, spontaneous onset of a macroscopic quantum phase occurs, indicating a solid-state BEC. BEC should also be possible at higher temperatures if coupling of light with solid excitations is sufficiently strong. Demokritov et al. have achieved just that, BEC at room temperature in a gas of magnons, which are a type of magnetic excitation. This paper presents a comprehensive set of experiments in which polaritons are excited in a semiconductor microcavity. Above a critical density of polaritons, massive occupation of the ground state at 19 K is observed and various pieces of experimental evidence point to a spontaneous onset of a macroscopic quantum phase.

2,527 citations

Journal ArticleDOI
TL;DR: In this paper, the main aspects of ultrashort laser pulse filamentation in various transparent media such as air (gases), transparent solids and liquids are introduced and discussed.

2,282 citations

Journal ArticleDOI
TL;DR: In this paper, a dual non-perturbative description for maximally extended Schwarzschild anti-de-Sitter spacetimes is proposed, which involves two copies of the conformal field theory associated to the AdS spacetime and an initial entangled state.
Abstract: We propose a dual non-perturbative description for maximally extended Schwarzschild Anti-de-Sitter spacetimes. The description involves two copies of the conformal field theory associated to the AdS spacetime and an initial entangled state. In this context we also discuss a version of the information loss paradox and its resolution.

1,801 citations