scispace - formally typeset
Search or ask a question
Author

Leonidas J. Guibas

Other affiliations: PARC, Association for Computing Machinery, ETH Zurich  ...read more
Bio: Leonidas J. Guibas is an academic researcher from Stanford University. The author has contributed to research in topics: Point cloud & Wireless sensor network. The author has an hindex of 124, co-authored 691 publications receiving 79200 citations. Previous affiliations of Leonidas J. Guibas include PARC & Association for Computing Machinery.


Papers
More filters
Proceedings ArticleDOI
01 Jul 2017
TL;DR: This paper addresses the problem of 3D reconstruction from a single image, generating a straight-forward form of output unorthordox, and designs architecture, loss function and learning paradigm that are novel and effective, capable of predicting multiple plausible 3D point clouds from an input image.
Abstract: Generation of 3D data by deep neural network has been attracting increasing attention in the research community. The majority of extant works resort to regular representations such as volumetric grids or collection of images, however, these representations obscure the natural invariance of 3D shapes under geometric transformations, and also suffer from a number of other issues. In this paper we address the problem of 3D reconstruction from a single image, generating a straight-forward form of output – point cloud coordinates. Along with this problem arises a unique and interesting issue, that the groundtruth shape for an input image may be ambiguous. Driven by this unorthordox output form and the inherent ambiguity in groundtruth, we design architecture, loss function and learning paradigm that are novel and effective. Our final solution is a conditional shape sampler, capable of predicting multiple plausible 3D point clouds from an input image. In experiments not only can our system outperform state-of-the-art methods on single image based 3D reconstruction benchmarks, but it also shows strong performance for 3D shape completion and promising ability in making multiple plausible predictions.

1,419 citations

Book
01 May 2004
TL;DR: This paper presents a meta-modelling framework that automates and automates the very labor-intensive and therefore time-heavy and expensive process of manually cataloging and cataloging sensor networks.
Abstract: Ch 1 Intro. Ch 2 Canonical Problem: Localization and Tracking Ch 3 Networking Sensor Networks Ch 4 Synchronization and Localization Ch 5 Sensor Tasking and Control Ch 6 Sensor Network Database Ch 7 Sensor Network Platforms and Tools Ch 8 Application and Future Direction

1,216 citations

Journal ArticleDOI
Leonidas J. Guibas1, Jorge Stolfi1
TL;DR: The following problem is discussed: given n points in the plane (the sites) and an arbitrary query point q, find the site that is closest to q, which can be solved by constructing the Voronoi diagram of the griven sites and then locating the query point in one of its regions.
Abstract: The following problem is discussed: given n points in the plane (the sites) and an arbitrary query point q, find the site that is closest to q. This problem can be solved by constructing the Voronoi diagram of the griven sites and then locating the query point inone of its regions. Two algorithms are given, one that constructs the Voronoi diagram in O(n log n) time, and another that inserts a new sit on O(n) time. Both are based on the use of the Voronoi dual, or Delaunay triangulation, and are simple enough to be of practical value. the simplicity of both algorithms can be attributed to the separation of the geometrical and topological aspects of the problem and to the use of two simple but powerful primitives, a geometric predicate and an operator for manipulating the topology of the diagram. The topology is represented by a new data structure for generalized diagrams, that is, embeddings of graphs in two-dimensional manifolds. This structure represents simultaneously an embedding, its dual, and its mirror image. Furthermore, just two operators are sufficients for building and modifying arbitrary diagrams.

1,201 citations

Posted Content
TL;DR: In this article, the authors address the problem of 3D reconstruction from a single image, generating a straight-forward form of output -point cloud coordinates. But the groundtruth shape for an input image may be ambiguous, and they design architecture, loss function and learning paradigm that are novel and effective.
Abstract: Generation of 3D data by deep neural network has been attracting increasing attention in the research community. The majority of extant works resort to regular representations such as volumetric grids or collection of images; however, these representations obscure the natural invariance of 3D shapes under geometric transformations and also suffer from a number of other issues. In this paper we address the problem of 3D reconstruction from a single image, generating a straight-forward form of output -- point cloud coordinates. Along with this problem arises a unique and interesting issue, that the groundtruth shape for an input image may be ambiguous. Driven by this unorthodox output form and the inherent ambiguity in groundtruth, we design architecture, loss function and learning paradigm that are novel and effective. Our final solution is a conditional shape sampler, capable of predicting multiple plausible 3D point clouds from an input image. In experiments not only can our system outperform state-of-the-art methods on single image based 3d reconstruction benchmarks; but it also shows a strong performance for 3d shape completion and promising ability in making multiple plausible predictions.

1,194 citations

Posted Content
TL;DR: PointNet as discussed by the authors proposes a novel type of neural network that directly consumes point clouds and well respects the permutation invariance of points in the input, which provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing.
Abstract: Point cloud is an important type of geometric data structure. Due to its irregular format, most researchers transform such data to regular 3D voxel grids or collections of images. This, however, renders data unnecessarily voluminous and causes issues. In this paper, we design a novel type of neural network that directly consumes point clouds and well respects the permutation invariance of points in the input. Our network, named PointNet, provides a unified architecture for applications ranging from object classification, part segmentation, to scene semantic parsing. Though simple, PointNet is highly efficient and effective. Empirically, it shows strong performance on par or even better than state of the art. Theoretically, we provide analysis towards understanding of what the network has learnt and why the network is robust with respect to input perturbation and corruption.

1,156 citations


Cited by
More filters
Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: CycleGAN as discussed by the authors learns a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss.
Abstract: Image-to-image translation is a class of vision and graphics problems where the goal is to learn the mapping between an input image and an output image using a training set of aligned image pairs. However, for many tasks, paired training data will not be available. We present an approach for learning to translate an image from a source domain X to a target domain Y in the absence of paired examples. Our goal is to learn a mapping G : X → Y such that the distribution of images from G(X) is indistinguishable from the distribution Y using an adversarial loss. Because this mapping is highly under-constrained, we couple it with an inverse mapping F : Y → X and introduce a cycle consistency loss to push F(G(X)) ≈ X (and vice versa). Qualitative results are presented on several tasks where paired training data does not exist, including collection style transfer, object transfiguration, season transfer, photo enhancement, etc. Quantitative comparisons against several prior methods demonstrate the superiority of our approach.

11,682 citations