scispace - formally typeset
Search or ask a question
Author

Leslee Lazar

Bio: Leslee Lazar is an academic researcher from National Brain Research Centre. The author has contributed to research in topics: Cortex (anatomy) & Spinal cord. The author has an hindex of 2, co-authored 3 publications receiving 88 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The results show that deafferentations lead to a more widespread brain reorganization than previously known and show that reorganization in areas S2 and PV shares a common substrate with area 3b, but there are specific features that emerge in S 2 and PV.
Abstract: Transection of dorsal columns of the spinal cord in adult monkeys results in large-scale expansion of the face inputs into the deafferented hand region in the primary somatosensory cortex (area 3b) and the ventroposterior nucleus of thalamus. Here, we determined whether the upstream cortical areas, secondary somatosensory (S2) and parietal ventral (PV) areas, also undergo reorganization after lesions of the dorsal columns. Areas S2, PV, and 3b were mapped after long-term unilateral lesions of the dorsal columns at cervical levels in adult macaque monkeys. In areas S2 and PV, we found neurons responding to touch on the face in regions in which responses to touch on the hand and other body parts are normally seen. In the reorganized parts of S2 and PV, inputs from the chin as well as other parts of the face were observed, whereas in area 3b only the chin inputs expand into the deafferented regions. The results show that deafferentations lead to a more widespread brain reorganization than previously known. The data also show that reorganization in areas S2 and PV shares a common substrate with area 3b, but there are specific features that emerge in S2 and PV.

52 citations

Journal ArticleDOI
TL;DR: Long-term sensory loss in adult monkeys does not change the overall topography of the movement representation in the motor cortex but results in changes in the details of movement representations.
Abstract: Long-term injuries to the dorsal columns of the spinal cord at cervical levels result in large-scale somatotopic reorganization of the somatosensory areas of the cortex and the ventroposterior nucleus of the thalamus. As a result of this reorganization, intact inputs from the face expand into the deafferented hand representations. Dorsal column injuries also result in permanent deficits in the use of digits for precision grip and a loss of fractionated movements of the digits. We determined whether the chronic loss of sensory inputs and the behavioral deficits caused by lesions of the dorsal columns in adult macaque monkeys affect organization of the motor cortex. The results show that, in the primary motor cortex, intracortical microstimulation evokes extension–flexion movements of the thumb at significantly fewer sites compared with the normal monkeys. There is a corresponding increase in the adduction–abduction movements. Furthermore, there is a significant increase in the thresholds of the currents required to evoke movements of the digits. Thus, long-term sensory loss in adult monkeys does not change the overall topography of the movement representation in the motor cortex but results in changes in the details of movement representations.

38 citations

Posted ContentDOI
31 Aug 2020-bioRxiv
TL;DR: It is shown that in area 3b of macaque monkeys, most neurons in the thumb representation do not respond to tactile stimulation of other digits and receive few intrinsic cortical inputs from other digits, whereas there is significantly more inter-digital information exchange between the other digits.
Abstract: The evolution of opposable thumb has enabled fine grasping ability and precision grip, which led to the capacity for fine manipulation of objects and refined tool use. Since tactile inputs to an opposable thumb are often spatially and temporally out of synch with inputs from the fingers, we hypothesized that inputs from the opposable thumb would be processed in an independent module in the primary somatosensory cortex (area 3b). Here we show that in area 3b of macaque monkeys, most neurons in the thumb representation do not respond to tactile stimulation of other digits and receive few intrinsic cortical inputs from other digits. However, neurons in the representations of other digits respond to touch on any of the four digits and are significantly more interconnected in the cortex. The thumb inputs are thus processed in an independent module, whereas there is significantly more inter-digital information exchange between the other digits. This cortical organization reflects behavioral use of the hand with an opposable thumb.

2 citations

Journal ArticleDOI
TL;DR: It is shown that in area 3b of macaque monkeys, most neurons in the thumb representation do not respond to tactile stimulation of other digits and receive few intrinsic cortical inputs from other digits, whereas there is a significantly more interdigital information exchange between the other digits.
Abstract: The evolution of opposable thumb has enabled fine grasping ability and precision grip, therefore the ability to finely manipulate the objects and refined tool use. Since tactile inputs to an opposable thumb are often spatially and temporally out of sync with inputs from the fingers, we hypothesized that inputs from the opposable thumb would be processed in an independent module in the primary somatosensory cortex (area 3b). Here we show that in area 3b of macaque monkeys, most neurons in the thumb representation do not respond to tactile stimulation of other digits and receive few intrinsic cortical inputs from other digits. However, neurons in the representations of other 4 digits respond to touch on any of the 4 digits and interconnect significantly more. The thumb inputs are thus processed in an independent module, whereas there is a significantly more interdigital information exchange between the other digits. This cortical organization reflects behavioral use of a hand with an opposable thumb.

Cited by
More filters
Book ChapterDOI
01 Jan 2012
TL;DR: The unique anatomy of the pathway for facial sensations, involving the trigeminal ganglion and its associated nuclei within the brainstem, and the opportunities that this offers for training and rehabilitation are addressed.
Abstract: This chapter addresses the unique anatomy of the pathway for facial sensations, involving the trigeminal ganglion and its associated nuclei within the brainstem. The innervation of specialized cranial structures such as the teeth, tongue, oral and nasal mucosa, cornea, meninges, and conjunctiva are considered. This chapter will also address trigeminal mechanisms in clinically relevant conditions such as toothache, headache and trigeminal neuralgia including using advances in imaging techniques and resolution. Thus it is now possible to obtain functional MR images (fMRI) of the trigeminal pathway from ganglion to cortex. Magnetoencephalography (MEG) and fMRI techniques have provided more details on cortical organization in facial regions of both S1 and S2, while diffusion tensor imaging has been useful for visualizing trigeminothalamic pathways. Plasticity of the system after injury, its association with pain conditions, and the opportunities that this offers for training and rehabilitation, are further areas of current research that are discussed.

179 citations

Journal ArticleDOI
TL;DR: This review will focus on delineating the pathophysiological mechanisms of the brain plasticity changes following SCI, based on the existing neuroimaging and neurophysiological evidence in experimental models and humans.

153 citations

Journal ArticleDOI
TL;DR: Evidence in subprimates and primates that the face primary somatosensory cortex ( face SI) and primary motor cortex (face MI) are involved in sensorimotor integration and control of orofacial motor functions that include semiautomatic movements and voluntary movements is described.

134 citations

Journal ArticleDOI
TL;DR: It is shown that a complete thoracic transection of the spinal cord produces immediate functional reorganization in the primary somatosensory cortex of anesthetized rats, and that this state change plays a critical role in the early cortical reorganization after spinal cord injury.
Abstract: Spinal cord injury can produce extensive long-term reorganization of the cerebral cortex. Little is known, however, about the sequence of cortical events starting immediately after the lesion. Here we show that a complete thoracic transection of the spinal cord produces immediate functional reorganization in the primary somatosensory cortex of anesthetized rats. Besides the obvious loss of cortical responses to hindpaw stimuli (below the level of the lesion), cortical responses evoked by forepaw stimuli (above the level of the lesion) markedly increase. Importantly, these increased responses correlate with a slower and overall more silent cortical spontaneous activity, representing a switch to a network state of slow-wave activity similar to that observed during slow-wave sleep. The same immediate cortical changes are observed after reversible pharmacological block of spinal cord conduction, but not after sham. We conclude that the deafferentation due to spinal cord injury can immediately (within minutes) change the state of large cortical networks, and that this state change plays a critical role in the early cortical reorganization after spinal cord injury.

132 citations