scispace - formally typeset
Search or ask a question
Author

Leslie G. Valiant

Bio: Leslie G. Valiant is an academic researcher from Harvard University. The author has contributed to research in topics: Boolean circuit & Boolean function. The author has an hindex of 63, co-authored 123 publications receiving 30912 citations. Previous affiliations of Leslie G. Valiant include University of Leeds & Carnegie Mellon University.


Papers
More filters
Proceedings ArticleDOI
05 Nov 1984
TL;DR: This paper regards learning as the phenomenon of knowledge acquisition in the absence of explicit programming, and gives a precise methodology for studying this phenomenon from a computational viewpoint.
Abstract: Humans appear to be able to learn new concepts without needing to be programmed explicitly in any conventional sense. In this paper we regard learning as the phenomenon of knowledge acquisition in the absence of explicit programming. We give a precise methodology for studying this phenomenon from a computational viewpoint. It consists of choosing an appropriate information gathering mechanism, the learning protocol, and exploring the class of concepts that can be learnt using it in a reasonable (polynomial) number of steps. We find that inherent algorithmic complexity appears to set serious limits to the range of concepts that can be so learnt. The methodology and results suggest concrete principles for designing realistic learning systems.

5,311 citations

Journal ArticleDOI
TL;DR: The bulk-synchronous parallel (BSP) model is introduced as a candidate for this role, and results quantifying its efficiency both in implementing high-level language features and algorithms, as well as in being implemented in hardware.
Abstract: The success of the von Neumann model of sequential computation is attributable to the fact that it is an efficient bridge between software and hardware: high-level languages can be efficiently compiled on to this model; yet it can be effeciently implemented in hardware. The author argues that an analogous bridge between software and hardware in required for parallel computation if that is to become as widely used. This article introduces the bulk-synchronous parallel (BSP) model as a candidate for this role, and gives results quantifying its efficiency both in implementing high-level language features and algorithms, as well as in being implemented in hardware.

3,885 citations

Journal ArticleDOI
TL;DR: It is shown that the permanent function of (0, 1)-matrices is a complete problem for the class of counting problems associated with nondeterministic polynomial time computations.

2,980 citations

Journal ArticleDOI
TL;DR: For a large number of natural counting problems for which there was no previous indication of intractability, that they belong to the class of computationally eqivalent counting problems that are at least as difficult as the NP-complete problems.
Abstract: The class of $# P$-complete problems is a class of computationally eqivalent counting problems (defined by the author in a previous paper) that are at least as difficult as the $NP$-complete problems. Here we show, for a large number of natural counting problems for which there was no previous indication of intractability, that they belong to this class. The technique used is that of polynomial time reduction with oracles via translations that are of algebraic or arithmetic nature.

2,147 citations

Journal ArticleDOI
TL;DR: It is shown that exactly uniform generation of ‘efficiently verifiable’ combinatorial structures is reducible to approximate counting (and hence, is within the third level of the polynomial hierarchy).

918 citations


Cited by
More filters
Journal ArticleDOI
Jeffrey Dean1, Sanjay Ghemawat1
06 Dec 2004
TL;DR: This paper presents the implementation of MapReduce, a programming model and an associated implementation for processing and generating large data sets that runs on a large cluster of commodity machines and is highly scalable.
Abstract: MapReduce is a programming model and an associated implementation for processing and generating large data sets. Users specify a map function that processes a key/value pair to generate a set of intermediate key/value pairs, and a reduce function that merges all intermediate values associated with the same intermediate key. Many real world tasks are expressible in this model, as shown in the paper. Programs written in this functional style are automatically parallelized and executed on a large cluster of commodity machines. The run-time system takes care of the details of partitioning the input data, scheduling the program's execution across a set of machines, handling machine failures, and managing the required inter-machine communication. This allows programmers without any experience with parallel and distributed systems to easily utilize the resources of a large distributed system. Our implementation of MapReduce runs on a large cluster of commodity machines and is highly scalable: a typical MapReduce computation processes many terabytes of data on thousands of machines. Programmers find the system easy to use: hundreds of MapReduce programs have been implemented and upwards of one thousand MapReduce jobs are executed on Google's clusters every day.

20,309 citations

Journal ArticleDOI
Jeffrey Dean1, Sanjay Ghemawat1
TL;DR: This presentation explains how the underlying runtime system automatically parallelizes the computation across large-scale clusters of machines, handles machine failures, and schedules inter-machine communication to make efficient use of the network and disks.
Abstract: MapReduce is a programming model and an associated implementation for processing and generating large datasets that is amenable to a broad variety of real-world tasks. Users specify the computation in terms of a map and a reduce function, and the underlying runtime system automatically parallelizes the computation across large-scale clusters of machines, handles machine failures, and schedules inter-machine communication to make efficient use of the network and disks. Programmers find the system easy to use: more than ten thousand distinct MapReduce programs have been implemented internally at Google over the past four years, and an average of one hundred thousand MapReduce jobs are executed on Google's clusters every day, processing a total of more than twenty petabytes of data per day.

17,663 citations

Book
23 May 2011
TL;DR: It is argued that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas.
Abstract: Many problems of recent interest in statistics and machine learning can be posed in the framework of convex optimization. Due to the explosion in size and complexity of modern datasets, it is increasingly important to be able to solve problems with a very large number of features or training examples. As a result, both the decentralized collection or storage of these datasets as well as accompanying distributed solution methods are either necessary or at least highly desirable. In this review, we argue that the alternating direction method of multipliers is well suited to distributed convex optimization, and in particular to large-scale problems arising in statistics, machine learning, and related areas. The method was developed in the 1970s, with roots in the 1950s, and is equivalent or closely related to many other algorithms, such as dual decomposition, the method of multipliers, Douglas–Rachford splitting, Spingarn's method of partial inverses, Dykstra's alternating projections, Bregman iterative algorithms for l1 problems, proximal methods, and others. After briefly surveying the theory and history of the algorithm, we discuss applications to a wide variety of statistical and machine learning problems of recent interest, including the lasso, sparse logistic regression, basis pursuit, covariance selection, support vector machines, and many others. We also discuss general distributed optimization, extensions to the nonconvex setting, and efficient implementation, including some details on distributed MPI and Hadoop MapReduce implementations.

17,433 citations

Proceedings ArticleDOI
01 Jun 1993
TL;DR: An efficient algorithm is presented that generates all significant association rules between items in the database of customer transactions and incorporates buffer management and novel estimation and pruning techniques.
Abstract: We are given a large database of customer transactions. Each transaction consists of items purchased by a customer in a visit. We present an efficient algorithm that generates all significant association rules between items in the database. The algorithm incorporates buffer management and novel estimation and pruning techniques. We also present results of applying this algorithm to sales data obtained from a large retailing company, which shows the effectiveness of the algorithm.

15,645 citations

Book ChapterDOI
TL;DR: The chapter discusses two important directions of research to improve learning algorithms: the dynamic node generation, which is used by the cascade correlation algorithm; and designing learning algorithms where the choice of parameters is not an issue.
Abstract: Publisher Summary This chapter provides an account of different neural network architectures for pattern recognition. A neural network consists of several simple processing elements called neurons. Each neuron is connected to some other neurons and possibly to the input nodes. Neural networks provide a simple computing paradigm to perform complex recognition tasks in real time. The chapter categorizes neural networks into three types: single-layer networks, multilayer feedforward networks, and feedback networks. It discusses the gradient descent and the relaxation method as the two underlying mathematical themes for deriving learning algorithms. A lot of research activity is centered on learning algorithms because of their fundamental importance in neural networks. The chapter discusses two important directions of research to improve learning algorithms: the dynamic node generation, which is used by the cascade correlation algorithm; and designing learning algorithms where the choice of parameters is not an issue. It closes with the discussion of performance and implementation issues.

13,033 citations