scispace - formally typeset
Search or ask a question
Author

Leslie Norford

Bio: Leslie Norford is an academic researcher from Massachusetts Institute of Technology. The author has contributed to research in topics: Urban heat island & HVAC. The author has an hindex of 15, co-authored 16 publications receiving 1573 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The drivers behind current rises in the use of low-cost sensors for air pollution management in cities are illustrated, while addressing the major challenges for their effective implementation.

591 citations

Journal ArticleDOI
TL;DR: This article reviews some fundamental drivers of UFP emissions and dispersion, and highlights unresolved challenges, as well as recommendations to ensure sustainable urban development whilst minimising any possible adverse health impacts.

491 citations

Journal ArticleDOI
TL;DR: In this article, an urban weather generator (UWG) is proposed to calculate air temperatures inside urban canyons from measurements at an operational weather station located in an open area outside a city.
Abstract: The increase in air temperature produced by urbanization, a phenomenon known as the urban heat island (UHI) effect, is often neglected in current building energy simulation practices. The UHI effect can have an impact on the energy consumption of buildings, especially those with low internal heat gains or with an inherent close interaction with the outdoor environment (e.g. naturally-ventilated buildings). This paper presents an urban weather generator (UWG) to calculate air temperatures inside urban canyons from measurements at an operational weather station located in an open area outside a city. The model can be used alone or integrated into existing programmes in order to account for the UHI effect in building energy simulations. The UWG is evaluated against field data from Basel (Switzerland) and Toulouse (France). The error of UWG predictions stays within the range of air temperature variability observed in different locations of the same urban area.

230 citations

01 Feb 2015
TL;DR: In this article, the authors illustrate the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.
Abstract: Ever growing populations in cities are associated with a major increase in road vehicles and air pollution. The overall high levels of urban air pollution have been shown to be of a significant risk to city dwellers. However, the impacts of very high but temporally and spatially restricted pollution, and thus exposure, are still poorly understood. Conventional approaches to air quality monitoring are based on networks of static and sparse measurement stations. However, these are prohibitively expensive to capture tempo-spatial heterogeneity and identify pollution hotspots, which is required for the development of robust real-time strategies for exposure control. Current progress in developing low-cost micro-scale sensing technology is radically changing the conventional approach to allow real-time information in a capillary form. But the question remains whether there is value in the less accurate data they generate. This article illustrates the drivers behind current rises in the use of low-cost sensors for air pollution management in cities, whilst addressing the major challenges for their effective implementation.

136 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present the fundamental drivers behind the rise of sensing technology for the management of energy and IAQ in urban built environments, highlights major challenges for their large-scale deployment and identifies the research gaps that should be closed by future investigations.

115 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review highlights the research aimed at the implementation of MOFs as an integral part of solid-state microelectronics and discusses the fundamental and applied aspects of this two-pronged approach.
Abstract: Metal-organic frameworks (MOFs) are typically highlighted for their potential application in gas storage, separations and catalysis. In contrast, the unique prospects these porous and crystalline materials offer for application in electronic devices, although actively developed, are often underexposed. This review highlights the research aimed at the implementation of MOFs as an integral part of solid-state microelectronics. Manufacturing these devices will critically depend on the compatibility of MOFs with existing fabrication protocols and predominant standards. Therefore, it is important to focus in parallel on a fundamental understanding of the distinguishing properties of MOFs and eliminating fabrication-related obstacles for integration. The latter implies a shift from the microcrystalline powder synthesis in chemistry labs, towards film deposition and processing in a cleanroom environment. Both the fundamental and applied aspects of this two-pronged approach are discussed. Critical directions for future research are proposed in an updated high-level roadmap to stimulate the next steps towards MOF-based microelectronics within the community.

908 citations

Journal ArticleDOI
TL;DR: An exhaustive evaluation of 24 identical units of a commercial low-cost sensor platform against CEN (European Standardization Organization) reference analyzers, evaluating their measurement capability over time and a range of environmental conditions shows that their performance varies spatially and temporally.

607 citations

Journal ArticleDOI
TL;DR: The drivers behind current rises in the use of low-cost sensors for air pollution management in cities are illustrated, while addressing the major challenges for their effective implementation.

591 citations

Journal ArticleDOI
TL;DR: SURFEX as mentioned in this paper is an externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean.
Abstract: . SURFEX is a new externalized land and ocean surface platform that describes the surface fluxes and the evolution of four types of surfaces: nature, town, inland water and ocean. It is mostly based on pre-existing, well-validated scientific models that are continuously improved. The motivation for the building of SURFEX is to use strictly identical scientific models in a high range of applications in order to mutualise the research and development efforts. SURFEX can be run in offline mode (0-D or 2-D runs) or in coupled mode (from mesoscale models to numerical weather prediction and climate models). An assimilation mode is included for numerical weather prediction and monitoring. In addition to momentum, heat and water fluxes, SURFEX is able to simulate fluxes of carbon dioxide, chemical species, continental aerosols, sea salt and snow particles. The main principles of the organisation of the surface are described first. Then, a survey is made of the scientific module (including the coupling strategy). Finally, the main applications of the code are summarised. The validation work undertaken shows that replacing the pre-existing surface models by SURFEX in these applications is usually associated with improved skill, as the numerous scientific developments contained in this community code are used to good advantage.

573 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined published literature on neighbourhood air quality modifications by green interventions and provided a better understanding of the interactions between vegetation and surrounding built-up environments and ascertain means of reducing local air pollution exposure using green infrastructure.

563 citations